In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751388PMC
http://dx.doi.org/10.1109/TMI.2023.3290003DOI Listing

Publication Analysis

Top Keywords

motion correction
20
patlak loss
12
fitting error
12
loss optimization
8
whole-body dynamic
8
dynamic pet
8
pet inter-frame
8
motion
8
inter-frame motion
8
deep learning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!