Surface Plasmonic Resonance (SPR) induced by metallic nanoparticles can be exploited to enhance the response of photodetectors (PD) to a large degree. Since the interface between metallic nanoparticles and semiconductors plays an important role in SPR, the magnitude of the enhancement is highly dependent on the morphology and roughness of the surface where the nanoparticles are distributed. In this work, we used mechanical polishing to produce different surface roughnesses for the ZnO film. Then, we exploited sputtering to fabricate Al nanoparticles on the ZnO film. The size and spacing of the Al nanoparticles were adjusted by sputtering power and time. Finally, we made a comparison among the PD with surface processing only, the Al-nanoparticles-enhanced PD, and the Al-nanoparticles-enhanced PD with surface processing. The results showed that increasing the surface roughness could enhance the photo response due to the augmentation of light scattering. More interestingly, the SPR induced by the Al nanoparticles could be strengthened by increasing the roughness. The responsivity could be enlarged by three orders of magnitude after we introduced surface roughness to boost the SPR. This work revealed the mechanism behind how surface roughness influences SPR enhancement. This provides new means for improving the photo responses of SPR-enhanced photodetectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301027 | PMC |
http://dx.doi.org/10.3390/nano13121877 | DOI Listing |
Folia Microbiol (Praha)
January 2025
Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Earth Sciences, Engineering Faculty, Autonomous University of San Luis Potosi, Av. Manuel Nava 8, San Luis Potosí, SLP, Mexico.
Ecosystems such as wetlands have karst groundwater as their primary source of preserving their services and functions. Karst systems are complex hydrogeological systems that are difficult to study because of their complicated functioning mechanism, which requires an interdisciplinary effort based on hydrodynamic assessment and characterization of the hydrogeology of the system. The study area is the Ramsar wetland Ciénaga de Tamasopo (Mexico), which is dependent on the discharge of karst groundwater that is affected by water extraction of extensive sugarcane agriculture and is also the main water source for the rural towns.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!