The super-ballistic temperature dependence of thermal conductivity, facilitated by collective phonons, has been widely studied. It has been claimed to be unambiguous evidence for hydrodynamic phonon transport in solids. Alternatively, hydrodynamic thermal conduction is predicted to be as strongly dependent on the width of the structure as is fluid flow, while its direct demonstration remains an unexplored challenge. In this work, we experimentally measured thermal conductivity in several graphite ribbon structures with different widths, from 300 nm to 1.2 µm, and studied its width dependence in a wide temperature range of 10-300 K. We observed enhanced width dependence of the thermal conductivity in the hydrodynamic window of 75 K compared to that in the ballistic limit, which provides indispensable evidence for phonon hydrodynamic transport from the perspective of peculiar width dependence. This will help to find the missing piece to complete the puzzle of phonon hydrodynamics, and guide future attempts at efficient heat dissipation in advanced electronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301785PMC
http://dx.doi.org/10.3390/nano13121854DOI Listing

Publication Analysis

Top Keywords

width dependence
16
thermal conductivity
16
dependence thermal
12
conductivity graphite
8
dependence
5
thermal
5
super-ballistic width
4
conductivity
4
graphite nanoribbons
4
nanoribbons microribbons
4

Similar Publications

Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.

View Article and Find Full Text PDF

Cr(VI) is widely used in industry and has high toxicity, making it one of the most common environmental pollutants. Long-term exposure to Cr(VI) can cause metabolic disorders and tissue damage. However, the effects of Cr(VI) on liver and gut microbes in fish have rarely been reported.

View Article and Find Full Text PDF

CaLuScAlSiO:Ce Green Phosphors for High-Quality White LEDs.

Inorg Chem

January 2025

College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, P.R. China.

Phosphors with broadband green emission are highly desirable for the construction of high-color-rendering warm-white light-emitting diode (LED) devices toward healthy solid-state lighting applications. However, most of the reported green phosphors are subject to an undesirable emission bandwidth and low quantum efficiency. Here, a highly efficient broadband green-emitting garnet phosphor, CaLuScAlSiO:Ce (CLSASO:Ce), is successfully synthesized and investigated in detail.

View Article and Find Full Text PDF

In this paper, a high-power UV-pumped BBO optical parametric oscillator (OPO) is presented by increasing the working temperature of the nonlinear crystal to fasten the color center recovery speed and further decrease the color center density. When the working temperature of the BBO crystal was experimentally increased from 135 °C to 185 °C, the output power was scaled up from 1.20 W to 2.

View Article and Find Full Text PDF

We analyze the single-photon band structure and the transport of a single photon in a one-dimensional coupled-spinning-resonator chain. The time-reversal symmetry of the resonators chain is broken by the spinning of the resonators, instead of external or synthetic magnetic field. Two nonreciprocal single-photon band gaps can be obtained in the coupled-spinning-resonator chain, whose width depends on the angular velocity of the spinning resonator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!