Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites.

Nanomaterials (Basel)

Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

Published: June 2023

Non-isothermal crystallization kinetics of montmorillonite (MMT)/polyamide 610 (PA610) composites were readily prepared by in situ melt polymerization followed by a full investigation in terms of their microstructure, performance, and crystallization kinetics. The kinetic models of Jeziorny, Ozawa, and Mo were used in turn to fit the experimental data, in all of which Mo's analytical method was found to be the best model for the kinetic data. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) studies were used to investigate the isothermal crystallization behavior and MMT dispersion levels in the MMT/PA610 composites. The experiment results revealed that low MMT content can promote the PA610 crystallization, whilst high MMT content result in MMT agglomeration, and reduce the PA610 crystallization rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302243PMC
http://dx.doi.org/10.3390/nano13121814DOI Listing

Publication Analysis

Top Keywords

crystallization kinetics
12
non-isothermal crystallization
8
mmt content
8
pa610 crystallization
8
crystallization
5
kinetics montmorillonite/polyamide
4
montmorillonite/polyamide 610
4
610 nanocomposites
4
nanocomposites non-isothermal
4
kinetics montmorillonite
4

Similar Publications

Activated Nanocellulose from Corn Husk: Application to As and Pb Adsorption Kinetics in Batch Wastewater.

Polymers (Basel)

December 2024

Research Group for the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru.

The aim of this study was to evaluate the removal of Pb and As from an aqueous solution using corn residue cellulose nanocrystals (NCCs). The corn husk was subjected to alkaline digestion, followed by bleaching and esterification with 3% citric acid to obtain NCCs. A 10 ppm multimetal solution of Pb and As was prepared.

View Article and Find Full Text PDF

Electrostatic Spray Drying of a Milk Protein Matrix-Impact on Maillard Reactions.

Molecules

December 2024

Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland.

Electrostatic spray drying (ESD) of a milk protein matrix comprising whey protein isolate (WPI), skim milk powder (SMP), and lactose was compared to conventional spray drying (CSD) and freeze-drying (FD). ESD and CSD were used to produce powders at low (0.12-0.

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to prevent biofilms on catheter surfaces. As a trial to find out such a potential agent of natural origin, the bark of Rottl.

View Article and Find Full Text PDF

Phase regulation of Ni(OH) nanosheets induced by W doping as self-supporting electrodes for boosted water electrolysis.

J Colloid Interface Sci

January 2025

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China. Electronic address:

Developing high-performance and low-cost electrodes for hydrogen and oxygen evolution reactions (HER and OER, respectively) represents a pivotal challenge in the field of water electrolysis. Herein, W doped NiFe LDH nanosheets (NiFe-W/NF) were immobilized on nickel foam (NF) through one-step corrosion engineering, which induced the coexistence of α-Ni(OH) and β-Ni(OH). The doping of large atomic radius W influenced the growth of crystal planes of Ni(OH), promoting the formation of α-Ni(OH), which results in large layer spaces and neatly arranged nanosheets structure.

View Article and Find Full Text PDF

Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!