Decoupling economic growth from environmental pollution for promoting low-carbon growth has become a global objective. Though the previous studies have mostly analyzed how environmental pollution can be reduced, not much emphasis was given to assessing how economic growth can be enhanced while limiting environmental damages in tandem. Hence, this study examines how carbon productivity is determined by energy productivity improvement, good governance, financial development, financial globalization, and international trade using data from 116 global economies. Overall, the analytical findings reveal that energy productivity improvement initially cannot decouple economic growth from environmental pollution by inhibiting carbon productivity. However, later on, using energy productively does manage to decouple economic growth from environmental pollution by boosting carbon productivity. Accordingly, the U-shaped nexus between these variables is confirmed by these statistical findings. Besides, the results also endorse the carbon productivity-boosting effects of good governance, financial development, and international trade while foreign direct investment receipts are not found to exert any significant impact on carbon productivity. On the other hand, the robustness tests' results affirm that the carbon productivity-influencing impacts are heterogeneous across countries belonging from different categories of national income, carbon productivity, energy productivity, governance, and regional locations, as well. Nevertheless, the results overall confirm that countries having comparatively higher levels of energy productivity and governance are more likely to decouple the growth of their respective economies from environmental pollution. Based on these findings, some decoupling policies are recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-28215-3 | DOI Listing |
J Mol Model
January 2025
Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan.
Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Syngenta Ltd, Jealott's Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK.
Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
In recent years, heightened concern has emerged regarding the pervasive presence of microplastics in the environment, particularly in aquatic ecosystems. This concern has prompted extensive scientific inquiry into microplastics' ecological and physiological implications, including threats to biodiversity. The robust adsorption capacity of microplastic surfaces facilitates their widespread distribution throughout aquatic ecosystems, acting also as carriers of organic pollutants.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
The Fifth Prospecting Team of Shandong Coal Geology Bureau, Jinan, 250100, China.
Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!