Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bolter miners are being increasingly used. Unfortunately, this mining technology causes a considerable amount of air pollution (especially by methane and dust) during excavation. In this study, the multiphase coupling field of airflow-dust-methane for different distances between the pressure air outlet and the working face (L) was simulated by using the FLUENT software. The migration law of pollutants in the multiphase coupling field was analyzed, and the distance parameters between the pressure air outlet and the working face were optimized. Finally, the simulation results were verified based on the field measurement results. We found that the blowdown effect was more obvious when 14 m ≤ L < 16 m compared with other conditions. The peak value of dust concentration within this distance range was the smallest (44.4% lower than the highest peak value, which was verified when L = 18 m), while the methane concentration was < 0.6%. A high-concentration area (where methane concentration > 0.75%), identified near the walking part of the bolter miner, was 13 m shorter than the largest (when L = 18 m). Therefore, we determined that the optimal blowdown distance would be 14 m ≤ L < 16 m. Within this range, the dust removal and methane dilution effects are optimal, effectively improving the tunnel air quality and providing a safe and clean environment for mine workers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27951-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!