Objective: This study aimed to explore the correlation between intravoxel incoherent motion (IVIM) parameters and microvessel architecture (microvessel density (MVD), vasculogenic mimicry (VM), and pericyte coverage index (PCI)) in an orthotopic murine model of rhabdomyosarcoma.

Methods: The murine model was established by injecting rhabdomyosarcoma-derived (RD) cells into the muscle. Nude mice underwent routine magnetic resonance imaging (MRI) and IVIM examinations with ten b values (0, 50, 100, 150, 200, 400, 600, 800, 1000, and 2000 s/mm). D, D*, and f values were calculated with the ADW4.7 workstation. MRI images and pathological slices were directly compared to ensure that radiology parameters accurately reflect pathology. MVD, VM, PCI, and cellularity were obtained by histological analysis. The correlations were assessed between IVIM parameters (D, D*, f, and fD* values) and pathological markers (MVD, VM, PCI, and cellularity).

Results: The average of D, D*, f, and fD* values were 0.55 ± 0.07 × 10mm/s, 5.25 ± 0.73 × 10mm/s, 13.39 ± 7.68%, and 0.73 ± 0.49 × 10mm/s, respectively. The average of MVD, VM, PCI, and cellularity were 41.91 ± 10.98, 1.16 ± 0.83, 0.49 ± 0.18, and 39.15 ± 9.00%. D*, f, and fD* values showed a positive correlation with MVD separately, while the D value did not correlate with MVD. D value negatively correlated to VM moderately, and other parameters did not associate with VM. D* and fD* values were positively correlated with PCI, but no correlation was observed between other parameters and PCI.

Conclusions: IVIM may evaluate the tumor microvessel architecture. D*, f, and fD* may reflect the endothelial lining blood vessel; D could indirectly reflect the VM; D* and fD* could reflect PCI(the normal degree of the tumor blood vessel).

Clinical Relevance Statement: An intravoxel incoherent motion may be useful in assessing rhabdomyosarcoma microvessel structure to predict the target and effectiveness of anti-angiogenic therapy.

Key Points: • IVIM may be used to evaluate the tumor microvessel architecture in the mouse rhabdomyosarcoma model. • The MRI-pathology control method achieves correspondence between MRI slices and pathology slices, which ensures the consistency of the ROI of MRI and the pathology observation region.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-023-09835-2DOI Listing

Publication Analysis

Top Keywords

microvessel architecture
16
fd* values
16
ivim parameters
12
murine model
12
mvd pci
12
parameters microvessel
8
mri images
8
images pathological
8
pathological slices
8
orthotopic murine
8

Similar Publications

Background: Benign and malignant breast tumors differ in their microvasculature morphology and distribution. Histologic biomarkers of malignant breast tumors are also correlated with the microvasculature. There is a lack of imaging technology for evaluating the microvasculature.

View Article and Find Full Text PDF

Background: Chronic arterial hypertension restructures the vascular architecture of the brain, leading to a series of pathological responses that culminate in cerebral small-vessel disease. Pericytes respond dynamically to vascular challenges; however, how they manifest under the continuous strain of hypertension has not been elucidated.

Methods And Results: In this study, we characterized pericyte behavior alongside hypertensive states in the spontaneously hypertensive stroke-prone rat model, focusing on their phenotypic and metabolic transformation.

View Article and Find Full Text PDF

Basement membranes in lung metastasis growth and progression.

Matrix Biol

February 2025

Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Spain. Electronic address:

The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies.

View Article and Find Full Text PDF

Native Valve and Native Neo-Sinus Remodeling Following Transcatheter Aortic Valve Replacement.

Circ Cardiovasc Interv

December 2024

Cardiovascular Translational Laboratory, Providence Research and Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada (J.Y., H.G., J.J., A.L., J.G.W., J.S., D.M., S.L.S.).

Background: Transcatheter aortic valve replacement (TAVR) pushes aside the diseased native aortic valve and creates a native neo-sinus bordered by the aortic root wall and the displaced native valve. There are limited data on the progression of native valve disease post-TAVR and no previous analysis of the native neo-sinus.

Methods: Native aortic valves and native neo-sinus explants obtained post-TAVR were evaluated histologically (hematoxylin and eosin, Movat pentachrome, and Martius Scarlet Blue stains) and by immunohistochemistry (TGF-β1 [transforming growth factor-beta 1], FAP [fibroblast activation protein], and ALP [alkaline phosphatase]) to assess disease mechanisms.

View Article and Find Full Text PDF

Natural tissues are composed of diverse cells and extracellular materials whose arrangements across several length scales-from subcellular lengths (micrometre) to the organ scale (centimetre)-regulate biological functions. Tissue-fabrication methods have progressed to large constructs, for example, through stereolithography and nozzle-based bioprinting, and subcellular resolution through subtractive photoablation. However, additive bioprinting struggles with sub-nozzle/voxel features and photoablation is restricted to small volumes by prohibitive heat generation and time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!