In this study, the peels of the yellow passion fruit ( flavicarpa) were used to develop a flour that was evaluated in terms of its physicochemical, microscopic, colorimetric, and granulometric characteristics, its total phenolic compound and carotenoid contents, and its antioxidant capacity. Fourier Transform Infrared (FTIR) spectroscopy measurements were employed to investigate the constituent functional groups, compounds' chemical profiles were assessed by Paper Spray Mass Spectrometry (PS-MS), and the compound's chemical profiles were evaluated by Ultra-Performance Liquid Chromatography (UPLC). This flour presented a light color, heterogeneous granulometry, high carbohydrate, carotenoid, and total phenolic compound contents with high antioxidant capacity. Scanning Electron Microscopy (SEM) showed a particulate flour, which is supposed to contribute to its compactness. FTIR demonstrated the presence of functional groups corresponding to cellulose, hemicellulose, and lignin, constituents of insoluble dietary fiber. The PS-MS analysis suggested the presence of 22 substances, covering diverse component classes such as organic, fatty, and phenolic acids, flavonoids, sugars, quinones, phenylpropanoid glycerides terpenes, and amino acids. This research demonstrated the potential of using Passion Fruit Peel Flour (PFPF) as an ingredient for food products. The advantages of using PFPF comprise the reduction of agro-industrial waste, contribution to the development of a sustainable food system, and increment of food products' functional profile. Moreover, its high content of several bioactive compounds can benefit consumers' health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303758PMC
http://dx.doi.org/10.3390/metabo13060684DOI Listing

Publication Analysis

Top Keywords

passion fruit
12
yellow passion
8
fruit peel
8
peel flour
8
total phenolic
8
phenolic compound
8
antioxidant capacity
8
functional groups
8
chemical profiles
8
flour
5

Similar Publications

Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp.

Plant Physiol Biochem

December 2024

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.

Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp.

View Article and Find Full Text PDF

Identification and Molecular Characterization of Telosma Mosaic Virus (TelMV) and East Asian Passiflora Virus (EAPV) from Patchouli in China.

Viruses

November 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Patchouli is a valuable medicinal herb and cash crop in China, but viral infections cause significant yield losses. This study identified six viruses in patchouli transcriptome data, including the first-ever detection of East Asian Passiflora Virus (EAPV) in patchouli. RT-PCR validated three viruses from diseased patchouli plants in Haikou, China: telosma tosaic virus (TelMV), broad bean wilt virus-2 (BBWV-2), and pogostemom alphacytorhabdovirus 1 (PogACRV1_Pog).

View Article and Find Full Text PDF

The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).

View Article and Find Full Text PDF

Orientin: a natural glycoside with versatile pharmacological activities.

Nat Prod Res

January 2025

Department of Biochemistry and Biotechnology, Faculty of Life Sciences, The Women University Multan, Multan, Pakistan.

Orientin is one of the flavonoid glycosides with diverse biological properties such as anticancer, antioxidant, neuroprotective, cardioprotective, antiallergic, and anti-inflammatory. It is found in several plants like rooibos tea, , , , and species. This review aimed to summarise the various medicinal properties of the orientin focusing on its underlying molecular mechanism reported based on and studies.

View Article and Find Full Text PDF

Over the last decade, the environmental and wellness cost of antibiotic drug resistance to the societies have been astounding and require urgent attention Metal oxide nanomaterials have been achieved a pull-on deal with its entire applications in biological and photocatalytic applications. The present study conducts a comparative investigation on chemical and biogenic synthesis of zirconium dioxide (ZrO) nanoparticles aimed at enhancing their efficacy in their applications. The plant extract of Passiflora edulis act as a reducing and capping properties offering a sustainable and eco-friendly alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!