Light sheet microscopy in live cells requires minimal excitation intensity and resolves three-dimensional (3D) information rapidly. Lattice light sheet microscopy (LLSM) works similarly but uses a lattice configuration of Bessel beams to generate a flatter, diffraction-limited z-axis sheet suitable for investigating subcellular compartments, with better tissue penetration. We developed a LLSM method for investigating cellular properties of tissue in situ. Neural structures provide an important target. Neurons are complex 3D structures, and signaling between cells and subcellular structures requires high resolution imaging. We developed an LLSM configuration based on the Janelia Research Campus design or in situ recording that allows simultaneous electrophysiological recording. We give examples of using LLSM to assess synaptic function in situ. In presynapses, evoked Ca entry causes vesicle fusion and neurotransmitter release. We demonstrate the use of LLSM to measure stimulus-evoked localized presynaptic Ca entry and track synaptic vesicle recycling. We also demonstrate the resolution of postsynaptic Ca signaling in single synapses. A challenge in 3D imaging is the need to move the emission objective to maintain focus. We have developed an incoherent holographic lattice light-sheet (IHLLS) technique to replace the LLS tube lens with a dual diffractive lens to obtain 3D images of spatially incoherent light diffracted from an object as incoherent holograms. The 3D structure is reproduced within the scanned volume without moving the emission objective. This eliminates mechanical artifacts and improves temporal resolution. We focus on LLS and IHLLS applications and data obtained in neuroscience and emphasize increases in temporal and spatial resolution using these approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299414 | PMC |
http://dx.doi.org/10.3390/jimaging9060121 | DOI Listing |
Eur J Neurosci
January 2025
Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference.
View Article and Find Full Text PDFPhytomedicine
January 2025
Post-graduate Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India.; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.. Electronic address:
Background: Cardiovascular diseases (CVDs) are the major contributor to global mortality and are gaining incremental attention following the COVID-19 outbreak. Epigenetic events such as DNA methylation, histone modifications, and non-coding RNAs have a significant impact on the incidence and onset of CVDs. Altered redox status is one of the major causative factors that regulate epigenetic pathways linked to CVDs.
View Article and Find Full Text PDFJ Neuroimmunol
January 2025
State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China; State Key Laboratory of Complex, Severe and Rare Diseases, Beijing 100005, China. Electronic address:
Although two-dimensional (2D) histology and immunohistochemistry techniques have long been established and successfully applied to obtain structural information from tissues, recent advances in tissue clearing and expansion approaches combined with light sheet microscopy have led to the realization of three-dimensional (3D) nondestructive pathology, which may revolutionize our knowledge of the morphology of an organ or the whole body in its true state. Employing these 3D technologies, we obtained imaging data of microglia in whole hippocampus of mice. We established a simple procedure to analyze the 3D structures of microglia using the commercial software Amira.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland. Electronic address:
Due to their small size and transparency, larval zebrafish are a useful model for whole-brain imaging. Here, we present a protocol for the visualization of phosphorylated Rps6, a marker of mechanistic target of rapamycin complex 1 (mTORC1) activity, in the zebrafish brains at 5 days post fertilization (dpf), using whole-mount immunofluorescence and light-sheet microscopy. We describe steps for sample preparation, storage, staining, and imaging.
View Article and Find Full Text PDFParasit Vectors
January 2025
Diptera Section, Zoological Survey of India, Kolkata, West Bengal, India.
Background: The detection of multiple bluetongue virus serotypes, increasing trend in livestock density, rich biological diversity with high endemism, and the status of the Andaman and Nicobar Islands as a popular tourist destination underscore the need for a faunistic survey of medically and veterinary significant vector species, specifically Culicoides, in this region. Moreover, scattered information on Indian Culicoides species complicates the planning and implementation of preventive measures for pathogens transmitted by these vectors. This study aims to provide the first comprehensive account of the Culicoides fauna in the Andaman and Nicobar Islands, India, along with an updated checklist of Indian Culicoides species and their state-wise distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!