Investigating Photo-Degradation as a Potential Pheromone Production Pathway in Spotted Lanternfly, .

Insects

Forest Pest Methods Laboratory, USDA-APHIS-PPQ S&T, 1398 W. Truck Rd., Buzzards Bay, MA 02542, USA.

Published: June 2023

Since its discovery in North America in 2014, the spotted lanternfly (SLF), , has become an economic, ecological, and nuisance pest there. Developing early detection and monitoring tools is critical to their mitigation and control. Previous research found evidence that SLF may use pheromones to help locate each other for aggregation or mating. Pheromone production necessitates specific conditions by the insects, and these must be investigated and described. A chemical process called photo-degradation has been described as a final step in the production of pheromones in several diurnal insect species, in which cuticular hydrocarbons were broken down by sunlight into volatile pheromone components. In this study, photo-degradation was investigated as a possible pheromone production pathway for SLF. Extracts from SLF mixed-sex third and fourth nymphs and male or female adults were either exposed to simulated sunlight to produce a photo-degradative reaction (photo-degraded), or not exposed to light (crude), while volatiles were collected. Behavioral bioassays tested for attraction to volatiles from photo-degraded and crude samples and their residues. In third instars, only the volatile samples from photo-degraded mixed-sex extracts were attractive. Fourth instar males were attracted to both crude and photo-degraded residues, and volatiles of photo-degraded mixed-sex extracts. Fourth instar females were attracted to volatiles of crude and photo-degraded mixed-sex extracts, but not to residues. In adults, only males were attracted to body volatiles from crude and photo-degraded extracts of either sex. Examination of all volatile samples using gas chromatography coupled with mass spectrometry (GC-MS) revealed that most of the identified compounds in photo-degraded extracts were also present in crude extracts. However, the abundance of these compounds in photo-degraded samples were 10 to 250 times more than their abundance in the crude counterparts. Results from behavioral bioassays indicate that photo-degradation probably does not generate a long-range pheromone, but it may be involved in the production of a short-range sex-recognition pheromone in SLF. This study provides additional evidence of pheromonal activity in SLF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299250PMC
http://dx.doi.org/10.3390/insects14060551DOI Listing

Publication Analysis

Top Keywords

pheromone production
12
photo-degraded mixed-sex
12
mixed-sex extracts
12
crude photo-degraded
12
photo-degraded
9
production pathway
8
spotted lanternfly
8
behavioral bioassays
8
volatiles photo-degraded
8
volatile samples
8

Similar Publications

Alkenyl pheromones: Raman spectroscopic analysis, DFT modeling, and machine learning for stereoisomerism evaluation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania. Electronic address:

Alkenyl pheromones are a class of insect sex pheromones that are characterized by the presence of one or more double bonds, which can be either in the E(trans) or Z(cis) configuration. This structural variation is essential in mating, as it influences reproductive behavior and provides a potential method for insect control. As a base for rapid and in-situ screening of synthetic pheromones or pheromone-based products, this study explores the potential of Raman spectroscopy to differentiate between the two geometrical isomers, E(trans) and Z(cis), of the alkenyl pheromones.

View Article and Find Full Text PDF

Many animals display physiological and behavioral activities limited to specific times of the day. Certain insects exhibit clear daily rhythms in their mating activities that are regulated by an internal biological clock. However, the specific genetic mechanisms underlying this regulation remain largely unexplored.

View Article and Find Full Text PDF

The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.

View Article and Find Full Text PDF

Behavioral dysfunctions in dogs represent one of the main social concerns, since they can endanger animals and human-dog relationship. Together with the trigger stimulus (human, animal, place, scent, auditory stimuli, objects), dogs can experience stressful conditions, either in multiple settings or unique situations, more often turning into generalized fear. Such a dysfunctional behavior can be associated with genetic susceptibility, environmental factors, traumatic experiences, and medical conditions.

View Article and Find Full Text PDF

Chemoselectivity in Pd-Based Dyotropic Rearrangement: Development and Application in Total Synthesis of Pheromones.

J Am Chem Soc

January 2025

Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, CH-1015 Lausanne, Switzerland.

In the dyotropic rearrangement of molecules with semiflexible structures, characterized by a freely rotating static C-C bond, the formation of a mixture of products is common due to the coexistence of several energetically comparable conformers. Herein, we report that it is possible to modulate the shifting groups by adjusting the metal's coordination sphere in Pd-based dyotropic rearrangement. In the presence of a catalytic amount of Pd(II) salt, the reaction of γ-hydroxyalkenes or γ,δ-dihydroxyalkenes with Selectfluor affords fluorinated tetrahydropyranols or 6,8-dioxabicyclo[3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!