Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels.

Gels

Centre for Engineering Biology, School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3FF, UK.

Published: June 2023

Protein engineering allows for the programming of specific building blocks to form functional and novel materials with customisable physical properties suitable for tailored engineering applications. We have successfully designed and programmed engineered proteins to form covalent molecular networks with defined physical characteristics. Our hydrogel design incorporates the SpyTag (ST) peptide and SpyCatcher (SC) protein that spontaneously form covalent crosslinks upon mixing. This genetically encodable chemistry allowed us to easily incorporate two stiff and rod-like recombinant proteins in the hydrogels and modulate the resulting viscoelastic properties. We demonstrated how differences in the composition of the microscopic building blocks change the macroscopic viscoelastic properties of the hydrogels. We specifically investigated how the identity of the protein pairs, the molar ratio of ST:SC, and the concentration of the proteins influence the viscoelastic response of the hydrogels. By showing tuneable changes in protein hydrogel rheology, we increased the capabilities of synthetic biology to create novel materials, allowing engineering biology to interface with soft matter, tissue engineering, and material science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298573PMC
http://dx.doi.org/10.3390/gels9060481DOI Listing

Publication Analysis

Top Keywords

viscoelastic properties
12
building blocks
8
novel materials
8
form covalent
8
protein
5
modulating viscoelastic
4
properties
4
properties covalently
4
covalently crosslinked
4
crosslinked protein
4

Similar Publications

The cytoplasm exhibits viscoelastic properties, displaying both solid and liquid-like behavior, and can actively regulate its mechanical attributes. The cytoskeleton is a major regulator among the numerous factors influencing cytoplasmic mechanics. We explore the interdependence of various cytoskeletal filaments and the impact of their density on cytoplasmic viscoelasticity.

View Article and Find Full Text PDF

For decades, extensive surfactant libraries have been developed to meet the requirements of downstream applications. However, achieving functional diversity has traditionally demanded a vast array of chemical motifs and synthetic pathways. Herein, a new approach for surfactant design based on structural isomerism is utilised to access a wide spectrum of functionalities.

View Article and Find Full Text PDF

Robotic artificial muscles, inspired by the adaptability of biological muscles, outperform rigid robots in dynamic environments due to their flexibility. However, the intrinsic compliance of the soft actuators restricts force transmission capacity and dynamic response. Biological muscle modulates their stiffness and damping, varying viscoelastic properties and force in interaction with the surroundings.

View Article and Find Full Text PDF

In this study, soybean protein isolate (SPI) / bacterial cellulose (BC) co-assemblies replicate the fibrous network structure in animal fat to stabilize the 3D-printed high internal phase Pickering emulsion (HIPPE) gels with excellent processing characteristics. The SPI/BC co-assemblies, structured through pH shifting treatment, displayed exceptional emulsification and gelation properties. The relevant results indicate that the SPI/BC co-assemblies possess numerous hydrophobic and thiol groups on their surfaces.

View Article and Find Full Text PDF

Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation.

Int J Biol Macromol

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China. Electronic address:

Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!