The cryopreservation of human spermatozoa has been an option for patients undergoing chemo or radiotherapies since the late 1950s. Presently, there are different techniques for the cryopreservation of spermatozoa. The most commonly used techniques are programmable slow freezing and freezing on liquid nitrogen vapors, while the use of vitrification is still not accepted as clinically relevant. Although there have been many improvements, the ideal technique for achieving better post-thaw sperm quality continues to be a mystery. A major obstacle during cryopreservation is the formation of intracellular ice crystals. Cryodamage generated by cryopreservation causes structural and molecular alterations in spermatozoa. Injuries can happen because of oxidative stress, temperature stress, and osmotic stress, which then result in changes in the plasma membrane fluidity, motility, viability, and DNA integrity of the spermatozoa. To prevent cryodamage as much as possible, cryoprotectants are added, and in some clinical trial cases, even antioxidants that may improve post-thaw sperm quality are added. This review discusses cryopreservation techniques, cryodamage on molecular and structural levels, and cryoprotectants. It provides a comparison of cryopreservation techniques and describes recent advances in those techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296824 | PMC |
http://dx.doi.org/10.3390/cimb45060300 | DOI Listing |
Reprod Domest Anim
January 2025
Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University of Rawalpindi, Rawalpindi, Pakistan.
A triad of enzymatic antioxidants viz., catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) constitutes a first line of defence against any redox imbalances in the semen. Cryopreservation enabling long term storage of semen also prompts generation of surplus reactive oxygen species (ROS) in the cells with waned antioxidants, hampering the full exploitation of this process.
View Article and Find Full Text PDFVet Sci
January 2025
Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia.
Reproductive technologies, including sperm cryopreservation, offer conservationists enhanced capacity to genetically manage populations and improve the outcomes of conservation breeding programs (CBPs). Despite this potential, the post-thaw quality of amphibian sperm is highly variable following cryopreservation, and research focused on protocol refinement is needed. The aim of this study was twofold: (1) to investigate the effect of the addition of bovine serum albumin (BSA) to the cryopreservation medium (pre-freeze), and (2) the effect of the addition of caffeine to the activation medium (post-thaw), on post-thaw sperm characteristics in the critically endangered Booroolong frog ().
View Article and Find Full Text PDFCryobiology
January 2025
Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkiye.
Resveratrol is a polyphenol compound showing strong antioxidant properties. It is believed that semen cryopreservation causes significant sperm losses which eventually affects sperm quality. Improving antioxidant status of semen may reduce this damage and enhance sperm fertilizing potential.
View Article and Find Full Text PDFCryobiology
January 2025
Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador. Electronic address:
This study evaluated the effectiveness of Percoll® density gradient centrifugation (Percoll-DGC) for selecting bull epididymal sperm prior to conventional slow (CS) or ultra-rapid (UR) freezing and its effects on sperm quality. Fifteen pooled samples from 30 epididymides (2 different samples/pool) of 15 bulls were split into two aliquots assigned to either CS or UR freezing. Samples were either selected using Percoll-DGC (40/80 %) or left non-selected (control), resulting in four pre-freezing treatments: Percoll-CS, Control-CS, Percoll-UR, and Control-UR.
View Article and Find Full Text PDFTheriogenology
January 2025
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Cryopreservation of rooster semen is a reproductive technology carried out to boost genetic gain and productivity in commercial flocks of chicken. However, semen freezing significantly reduces the quality and fertilizing potential of spermatozoa. This study examined cryoprotective effects of the mitochondria-targeted antioxidant mitoquinol mesylate added to the freezing extender by assessing post-thaw characteristics of rooster sperm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!