NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy.

Biosensors (Basel)

Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.

Published: June 2023

Photothermal therapy (PTT) has received constant attention as a promising cancer treatment. However, PTT-induced inflammation can limit its effectiveness. To address this shortcoming, we developed second near-infrared (NIR-II) light-activated nanotheranostics (CPNPBs), which include a thermosensitive nitric oxide (NO) donor (BNN6) to enhance PTT. Under a 1064 nm laser irradiation, the conjugated polymer in CPNPBs serves as a photothermal agent for photothermal conversion, and the generated heat triggers the decomposition of BNN6 to release NO. The combination of hyperthermia and NO generation under single NIR-II laser irradiation allows enhanced thermal ablation of tumors. Consequently, CPNPBs can be exploited as potential candidates for NO-enhanced PTT, holding great promise for their clinical translational development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296163PMC
http://dx.doi.org/10.3390/bios13060642DOI Listing

Publication Analysis

Top Keywords

conjugated polymer
8
photothermal therapy
8
laser irradiation
8
nir-ii absorbing
4
absorbing conjugated
4
polymer nanotheranostics
4
nanotheranostics thermal
4
thermal initiated
4
initiated enhanced
4
photothermal
4

Similar Publications

This study unveils a novel property of polyaniline by establishing its catalytic activity in heterogeneous hydrogenation with molecular hydrogen. Polyaniline was activated by heat-treating at different temperatures in a hydrogen atmosphere. The sample treated at 300 °C exhibited the highest catalytic activity for ethylene hydrogenation in the gas phase at atmospheric pressure and for p-nitrotoluene or α-methylstyrene hydrogenation in the liquid phase.

View Article and Find Full Text PDF

Interfacial Engineering with a Conjugated Conductive Polymer for a Highly Reversible Zn Anode.

ACS Appl Mater Interfaces

January 2025

Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, China.

For Zn metal batteries, the Zn anode faces several challenges, including Zn dendrites, hydrogen evolution, and corrosion. These issues are closely related to the Zn deposition process at the electrode/electrolyte interface. Herein, we propose interfacial engineering to protect the Zn anode and induce homogeneous deposition using conjugated cyclized polyacrylonitrile (cPAN) polymer nanofibers.

View Article and Find Full Text PDF

Polymer-based vaccines for substance use disorders: Targeting ketamine and methamphetamine with protein-free hyperbranched polyethyleneimine carriers.

Eur J Med Chem

January 2025

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:

Substance use disorders (SUDs) present a critical global health challenge, as current treatment options often prove insufficient, particularly for substances like ketamine and methamphetamine. In this study, we developed a novel immunotherapeutic strategy utilizing protein-free, polymer-based vaccines, with hyperbranched polyethylenimine (Hb-PEI) as a carrier to enhance immune specificity and remove the production of non-specific antibodies. Haptens for ketamine and methamphetamine were covalently conjugated to the Hb-PEI carrier, along with the Toll-like receptor (TLR) 7/8 agonist 1V209, to stimulate targeted humoral immune responses.

View Article and Find Full Text PDF

Oxygen-Driven Atom Transfer Radical Polymerization.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.

View Article and Find Full Text PDF

Biodegradable semiconducting polymer nanoparticles for phototheranostics.

J Mater Chem B

January 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Semiconducting polymer nanoparticles (SPNs) have been widely applied for phototheranostics. However, the disadvantage of long-term metabolism greatly suppresses the clinical application of SPNs. To improve the metabolic rate and minimize the long-term toxicity of SPNs, biodegradable semiconducting polymers (BSPs), whose backbones may be degraded under certain conditions, have been designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!