Molecularly imprinted polymers (MIPs), a biomimetic artificial receptor system inspired by the human body's antibody-antigen reactions, have gained significant attraction in the area of sensor development applications, especially in the areas of medical, pharmaceutical, food quality control, and the environment. MIPs are found to enhance the sensitivity and specificity of typical optical and electrochemical sensors severalfold with their precise binding to the analytes of choice. In this review, different polymerization chemistries, strategies used in the synthesis of MIPs, and various factors influencing the imprinting parameters to achieve high-performing MIPs are explained in depth. This review also highlights the recent developments in the field, such as MIP-based nanocomposites through nanoscale imprinting, MIP-based thin layers through surface imprinting, and other latest advancements in the sensor field. Furthermore, the role of MIPs in enhancing the sensitivity and specificity of sensors, especially optical and electrochemical sensors, is elaborated. In the later part of the review, applications of MIP-based optical and electrochemical sensors for the detection of biomarkers, enzymes, bacteria, viruses, and various emerging micropollutants like pharmaceutical drugs, pesticides, and heavy metal ions are discussed in detail. Finally, MIP's role in bioimaging applications is elucidated with a critical assessment of the future research directions for MIP-based biomimetic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296503 | PMC |
http://dx.doi.org/10.3390/biomimetics8020245 | DOI Listing |
ACS Nano
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.
View Article and Find Full Text PDFACS Electrochem
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston, University of Houston, Houston, Texas 77204, United States.
Magnesium batteries offer a safer alternative for next-generation battery technology due to their insusceptibility to dendrite deposition. Selective membranes tailored for magnesium-ion conduction will unlock further technological advancement. Herein, we demonstrate fluorine-free magnesiated sulfonated poly(ether ether ketone) (Mg-SPEEK) selective membranes capable of facilitating magnesium-ion conduction while effectively rejecting soluble organic species.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India.
Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!