Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engineering, agriculture, environmental protection, and other research fields. The myco-synthesis of nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, including their size, shape, homogeneity, stability, physical properties and biological activity, can be tuned by changing the myco-synthesis conditions. This review summarizes the data on the diversity of oxide and chalcogenide nanoparticles produced by various fungal species under different experimental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296001 | PMC |
http://dx.doi.org/10.3390/biomimetics8020224 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
Synthesized 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarbohydrazide (DTT) Schiff base derivatives newly were synthesized by attaching with different aldehydes, deposited in thin film form by thermal evaporation technique, and characterized by UV-Visible-NIR spectroscopy, FT-IR, NMR, and elemental analysis. It is revealed that compound 4 has the highest absorption peak intensity at 586 nm. The allied absorption, dielectric, and dispersion parameters have been calculated and discussed.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
Functional materials, possessing specific properties and performing particular functions beyond their mechanical or structural roles, are the foundation of modern matter science including energy, environment, and quantum sciences. The atomic and electronic structures of these materials can be significantly altered by external stimuli such as pressure. High-pressure techniques have been extensively utilized to deepen our understanding of structure-property relationships of materials, while also enabling emergent or enhanced properties.
View Article and Find Full Text PDFSci Adv
January 2025
2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
J Phys Condens Matter
January 2025
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province, 225000, P. R. China.
Chalcogenides are the most important infrared nonlinear optical (NLO) material candidates, and the exploration of high-performance ones is attractive and challengeable. Hitherto, there is no NLO scandium (Sc) chalcogenides experimentally studied. Here, new quaternary Sc thiophosphate CsScPS (CSPS) was synthesized by the facile metal oxide-boron-sulfur/reactive flux hybrid solid-state method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!