Pneumonia elicits the production of cytotoxic beta amyloid (Aβ) that contributes to end-organ dysfunction, yet the mechanism(s) linking infection to activation of the amyloidogenic pathway that produces cytotoxic Aβ is unknown. Here, we tested the hypothesis that gamma-secretase activating protein (GSAP), which contributes to the amyloidogenic pathway in the brain, promotes end-organ dysfunction following bacterial pneumonia. First-in-kind knockout rats were generated. Wild-type and knockout rats possessed similar body weights, organ weights, circulating blood cell counts, arterial blood gases, and cardiac indices at baseline. Intratracheal infection caused acute lung injury and a hyperdynamic circulatory state. Whereas infection led to arterial hypoxemia in wild-type rats, the alveolar-capillary barrier integrity was preserved in knockout rats. Infection potentiated myocardial infarction following ischemia-reperfusion injury, and this potentiation was abolished in knockout rats. In the hippocampus, GSAP contributed to both pre- and postsynaptic neurotransmission, increasing the presynaptic action potential recruitment, decreasing neurotransmitter release probability, decreasing the postsynaptic response, and preventing postsynaptic hyperexcitability, resulting in greater early long-term potentiation but reduced late long-term potentiation. Infection abolished early and late long-term potentiation in wild-type rats, whereas the late long-term potentiation was partially preserved in knockout rats. Furthermore, hippocampi from knockout rats, and both the wild-type and knockout rats following infection, exhibited a GSAP-dependent increase in neurotransmitter release probability and postsynaptic hyperexcitability. These results elucidate an unappreciated role for GSAP in innate immunity and highlight the contribution of GSAP to end-organ dysfunction during infection. Pneumonia is a common cause of end-organ dysfunction, both during and in the aftermath of infection. In particular, pneumonia is a common cause of lung injury, increased risk of myocardial infarction, and neurocognitive dysfunction, although the mechanisms responsible for such increased risk are unknown. Here, we reveal that gamma-secretase activating protein, which contributes to the amyloidogenic pathway, is important for end-organ dysfunction following infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396227 | PMC |
http://dx.doi.org/10.1152/ajplung.00018.2023 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Shanxi Genetic Engineering Center for Experimental Animal Models, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, Shanxi, China.
Phospholipase A2 receptor 1 (PLA2R1) exists in many animals and plays an important role in membranous nephropathy. In this study, we aimed to evaluate a PLA2R1 knock-in rat model with repaired kidney function to study the molecular mechanisms of membranous nephropathy. We constructed the PLA2R1 knockout [PLA2R1(-)] model and PLA2R1 knock in [PLA2R1(+)] model in rats.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 450003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 450003, Henan, China. Electronic address:
Blast lung injury (BLI) is a major cause of death in blast injuries, largely due to pulmonary edema. Effective clearance of alveolar fluid is critical for resolving pulmonary edema, with the epithelial sodium channel (ENaC) playing a key role in this process. Resveratrol (RES), a natural compound with known antioxidant and anti-inflammatory properties, has shown promise in treating respiratory diseases.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium.
Heart failure is a common and deadly disease requiring new treatments. The neuregulin-1/ERBB4 pathway offers cardioprotective benefits, but using recombinant neuregulin-1 as therapy has limitations due to the need for intravenous delivery and lack of receptor specificity. We hypothesize that small-molecule activation of ERBB4 could protect against heart damage and fibrosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan.
Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!