Two haloargentate hybrids, [Me-dabco]AgX (Me-dabco = 1-methyl-1,4-diazabicyclo-[2.2.2]octan-1-ium, X = I (1) or Br (2)), with the same formula but different structures have been synthesized by a slow evaporation method and characterized by microanalysis, infrared spectroscopy, thermogravimetric, and powder X-ray diffraction techniques. Hybrid 1 consists of completely isolated [AgI] clusters, while hybrid 2 exhibits a complicated one-dimensional (1D) chain structure formed by four different configurations of neutral chains and two dissimilar configurations of anionic chains. Hybrid 2 undergoes two reversible order-disorder phase transitions, while hybrid 1 displays one reversible and one irreversible structural phase transition. Both 1 and 2 displayed step-like dielectric anomalies in the vicinity of the phase transition temperature. The corresponding dielectric constants in the high dielectric states are approximately 13 and 6 times higher than those in the low dielectric states for 1 and 2, respectively. Interestingly, the subtle change of halides from I to Br significantly affects the aggregated structure of haloargentate, the phase transition, and dielectric behaviors, revealing the typical 'butterfly effect' with the ion radii of halides in these two haloargentate hybrids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt01366a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!