Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0-3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmA) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Col), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against ΔTolC and ) and promising selectivity ratio in favour of antimicrobial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp00485f | DOI Listing |
Chemistry
December 2024
Johannes Gutenberg University Mainz, Organic Chemistry Institute, Duesbergweg 10-14, 55128, Mainz, GERMANY.
Understanding the mechanism of self-assembly driven by non-covalent interactions is crucial for designing supramolecular materials with desired properties. Here we investigate the self-assembly of aromatic peptide amphiphiles, Fmoc-L2QG and Fmoc-L3QG using a combination of spectroscopic, transmission electron and superresolution optical microscopy techniques. Our results show that Fmoc-L2QG leads to concentration-dependent assembly, forming fibrous assemblies at low concentrations and supramolecular droplets via liquid-liquid phase separation (LLPS) at higher concentrations.
View Article and Find Full Text PDFBiophys Chem
December 2024
Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Electronic address:
KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
Langmuir
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
Rational control over the morphologies of supramolecular assemblies for asymmetric catalysis with enhanced enantioselectivity represents a pivotal challenge in the realm of synthetic chemistry and material technology. Herein, Cu(II) ion-mediated supramolecular nanostructures assembled from chiral amino acid-based amphiphiles (l/d-AlaC) are fabricated as chiral catalysts for Diels-Alder cycloaddition between aza-chalcone and cyclopentadiene. In particular, compared with the supramolecular nanosheet formed by l/d-AlaC without Cu(II) ions, we found that the l/d-alanine chiral amphiphile can form supramolecular nanotubes with a multilayer structure and with the thickness of the tubular wall about 15 nm through the transition from a nanoribbon to tubular structure in the presence of Cu(II) ions.
View Article and Find Full Text PDFFront Immunol
December 2024
Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China.
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!