Water molecules and the associated proton transfer (PT) are prevalent in chemical and biological systems and have been a hot research topic. Spectroscopic characterization and ab initio molecular dynamics (AIMD) simulations have previously revealed insights into acidic and basic liquids. Presumably, the situation in the acidic/basic solution is not necessarily the same as in pure water; in addition, the autoionization constant for water is only 10 under ambient conditions, making the study of PT in pure water challenging. To overcome this issue, we modeled periodic water box systems containing 1000 molecules for tens of nanoseconds based on a neural network potential (NNP) with quantum mechanical accuracy. The NNP was generated by training a dataset containing the energies and atomic forces of 17 075 configurations of periodic water box systems, and these data points were calculated at the MP2 level that considers electron correlation effects. We found that the size of the system and the duration of the simulation have a significant impact on the convergence of the results. With these factors considered, our simulations showed that hydronium (HO) and hydroxide (OH) ions in water have distinct hydration structures, thermodynamic and kinetic properties, e.g., the longer-lasting and more stable hydrated structure of OH ions than that of HO, as well as a significantly higher free energy barrier for the OH-associated PT than that of HO, leading the two to exhibit completely different PT behaviors. Given these characteristics, we further found that PT via OH ions tends not to occur multiple times or between many molecules. In contrast, PT via HO can synergistically occur among multiple molecules and prefers to adopt a cyclic pattern among three water molecules, while it occurs mostly in a chain pattern when more water molecules are involved. Therefore, our studies provide a detailed and solid microscopic explanation for the PT process in pure water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c00244 | DOI Listing |
Heliyon
January 2025
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
Packaging films based on natural biopolymers often suffer from inadequate barrier and mechanical properties. To address these challenges, multilayer films have emerged as potential solutions. In this study, we prepared bilayer films using bitter vetch seed protein (BVSP) and polylactic acid (PLA).
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.
View Article and Find Full Text PDFBiomed Opt Express
January 2025
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.
Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.
Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.
View Article and Find Full Text PDFLangmuir
January 2025
School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan.
Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!