Limitations of non-polarizable force fields in describing anion binding poses in non-polar synthetic hosts.

Phys Chem Chem Phys

Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.

Published: July 2023

Transmembrane anion transport by synthetic ionophores has received increasing interest not only because of its relevance for understanding endogenous anion transport, but also because of potential implications for therapeutic routes in disease states where chloride transport is impaired. Computational studies can shed light on the binding recognition process and can deepen our mechanistic understanding of them. However, the ability of molecular mechanics methods to properly capture solvation and binding properties of anions is known to be challenging. Consequently, polarizable models have been suggested to improve the accuracy of such calculations. In this study, we calculate binding free energies for different anions to the synthetic ionophore, biotin[6]uril hexamethyl ester in acetonitrile and to biotin[6]uril hexaacid in water by employing non-polarizable and polarizable force fields. Anion binding shows strong solvent dependency consistent with experimental studies. In water, the binding strengths are iodide > bromide > chloride, and reversed in acetonitrile. These trends are well captured by both classes of force fields. However, the free energy profiles obtained from potential of mean force calculations and preferred binding positions of anions depend on the treatment of electrostatics. Results from simulations using the AMOEBA force-field, which recapitulate the observed binding positions, suggest strong effects from multipoles dominate with a smaller contribution from polarization. The oxidation status of the macrocycle was also found to influence anion recognition in water. Overall, these results have implications for the understanding of anion host interactions not just in synthetic ionophores, but also in narrow cavities of biological ion channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321056PMC
http://dx.doi.org/10.1039/d3cp00479aDOI Listing

Publication Analysis

Top Keywords

force fields
12
binding
8
anion binding
8
anion transport
8
synthetic ionophores
8
binding positions
8
anion
6
limitations non-polarizable
4
force
4
non-polarizable force
4

Similar Publications

Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.

Objective.

View Article and Find Full Text PDF

Purposeful movement often requires selection of a particular action from a range of alternatives, but how does the brain represent potential actions so that they can be compared for selection, and how are motor commands generated if movement is initiated before the final goal is identified? According to one hypothesis, the brain averages partially prepared motor plans to generate movement when there is goal uncertainty. This is consistent with the idea that motor decision-making unfolds through competition between internal representations of alternative actions. An alternative hypothesis holds that only one movement, which is optimized for task performance, is prepared for execution at any time.

View Article and Find Full Text PDF

Comparison Between Molecular Dynamics Potentials for Simulation of Graphene-Based Nanomaterials for Biomedical Applications.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia.

Objective: This article provides a substantial review of recent research and comparison on molecular dynamics potentials to determine which are most suitable for simulating the phenomena in graphene-based nanomaterials (GBNs).

Significance: GBNs gain significant attention due to their remarkable properties and potential applications, notably in nanomedicine. However, the physical and chemical characteristics toward macromolecules that justify their nanomedical applications are not yet fully understood.

View Article and Find Full Text PDF

In Situ Mechanics of the Cytoskeleton.

Cytoskeleton (Hoboken)

January 2025

Department of Science, Yokohama City University, Yokohama, Japan.

Not only for man-made architecture but also for living cells, the relationship between force and structure is a fundamental properties that governs their mechanical behaviors. However, our knowledge of the mechanical properties of intracellular structures is very limited because of the lack of direct measurement methods. We established high-force intracellular magnetic tweezers that can generate calibrated forces up to 10 nN, enabling direct force measurements of the cytoskeleton.

View Article and Find Full Text PDF

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!