Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biotremors are vibrations, usually surface waves along the boundary of a medium, produced by an organism. While substrate-borne vibrations are utilized by different reptile species, true conspecific communication via biotremors has not yet been demonstrated in lizards. Recent research revealed that the veiled chameleon (Chamaeleo calyptratus) produces biotremors. The prerequisites for any communication system are the ability of an organism to produce and detect a signal. We tested C. calyptratus behavioral responses to vibrations by placing them on a dowel attached to a shaker, emitting vibrations of 25, 50, 150, 300, and 600 Hz and compared their locomotory velocity before and after the stimulus. Adult chameleons exhibited a freeze response to 50 and 150 Hz, while juveniles exhibited a similar response to frequencies between 50 and 300 Hz. In a second experiment, chameleons were induced to produce biotremors via experimenter contact. These biotremors ranged in mean fundamental frequency from 106.4 to 170.3 Hz and in duration from 0.06 to 0.29 s. Overall, two classes of biotremors were identified, "hoots" and "mini-hoots," which differed significantly in mean relative signal intensity (-7.5 and -32.5 dB, respectively). Juvenile chameleons 2 months of age were able to produce biotremors, suggesting this behavior may serve a wide range of ecological functions throughout ontogeny. Overall, the data demonstrate that C. calyptratus can both produce and detect biotremors that could be used for intraspecific communication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icad085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!