Background: Due to individual differences and lack of objective biomarkers, only 30-40% patients with major depressive disorder (MDD) achieve remission after initial antidepressant medication (ADM). We aimed to employ radiomics analysis after ComBat harmonization to predict early improvement to ADM in adolescents with MDD by using brain multiscale structural MRI (sMRI) and identify the radiomics features with high prediction power for selection of selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs).

Methods: 121 MDD patients were recruited for brain sMRI, including three-dimensional T1 weighted imaging (3D-TWI)and diffusion tensor imaging (DTI). After receiving SSRIs or SNRIs for 2 weeks, the subjects were divided into ADM improvers (SSRIs improvers and SNRIs improvers) and non-improvers according to reduction rate of the Hamilton Depression Rating Scale, 17 item (HAM-D) score. Then, sMRI data were preprocessed, and conventional imaging indicators and radiomics features of gray matter (GM) based on surface-based morphology (SBM) and voxel-based morphology (VBM) and diffusion properties of white matter (WM) were extracted and harmonized with ComBat harmonization. Two-level reduction strategy with analysis of variance (ANOVA) and recursive feature elimination (RFE) was utilized sequentially to decrease high-dimensional features. Support vector machine with radial basis function kernel (RBF-SVM) was used to integrate multiscale sMRI features to construct models for early improvement prediction. Area under the curve (AUC), accuracy, sensitivity, and specificity based on the leave-one-out cross-validation (LOO-CV) and receiver operating characteristic (ROC) curve analysis were calculated to evaluate the model performance. Permutation tests were used for assessing the generalization rate.

Results: After 2-week ADM, 121 patients were divided into 67 ADM improvers (31 SSRIs improvers and 36 SNRIs improvers) and 54 ADM non-improvers. After two-level dimensionality reduction, 8 conventional indicators (2 VBM-based features and 6 diffusion features) and 49 radiomics features (16 VBM-based features and 33 diffusion features) were selected. The overall accuracy of RBF-SVM models based on conventional indicators and radiomics features was 74.80% and 88.19%. The radiomics model achieved the AUC, sensitivity, specificity, and accuracy of 0.889, 91.2%, 80.1% and 85.1%, 0.954, 89.2%, 87.4% and 88.5%, 0.942, 91.9%, 82.5% and 86.8% for predicting ADM improvers, SSRIs improvers and SNRIs improvers, respectively. P value of permutation tests were less than 0.001. The radiomics features predicting ADM improver were mainly located in the hippocampus, medial orbitofrontal gyrus, anterior cingulate gyrus, cerebellum (lobule vii-b), body of corpus callosum, etc. The radiomics features predicting SSRIs improver were primarily distributed in hippocampus, amygdala, inferior temporal gyrus, thalamus, cerebellum (lobule vi), fornix, cerebellar peduncle, etc. The radiomics features predicting SNRIs improver were primarily located in the medial orbitofrontal cortex, anterior cingulate gyrus, ventral striatum, corpus callosum, etc. CONCLUSIONS: These findings suggest the radiomics analysis based on brain multiscale sMRI after ComBat harmonization could effectively predict the early improvement of ADM in adolescent MDD patients with a high accuracy, which was superior to the model based on the conventional indicators. The radiomics features with high prediction power may help for the individual selection of SSRIs and SNRIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10294484PMC
http://dx.doi.org/10.1186/s12888-023-04966-8DOI Listing

Publication Analysis

Top Keywords

radiomics features
32
early improvement
16
combat harmonization
16
features
14
radiomics
12
radiomics analysis
12
adm improvers
12
improvers ssris
12
ssris improvers
12
improvers snris
12

Similar Publications

Prostate cancer is a significant global health issue due to its high incidence and poor outcomes in metastatic disease. This study aims to develop models predicting overall survival for patients with metastatic biochemically recurrent prostate cancer, potentially helping to identify high-risk patients and enabling more tailored treatment options. A multi-centre cohort of 180 such patients underwent [Ga]Ga-PSMA-11 PET/CT scans, with lesions semi-automatically segmented and radiomic features extracted from lesions.

View Article and Find Full Text PDF

Automated Lesion and Feature Extraction Pipeline for Brain MRIs with Interpretability.

Neuroinformatics

January 2025

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.

This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALFE pipeline is modeled after the neuroradiology workflow and generates features that can be used by physicians for quantitative analysis of clinical brain MRIs and for machine learning applications. The pipeline uses a decoupled design which allows the user to customize the image processing, image registrations, and AI segmentation tools without the need to change the business logic of the pipeline.

View Article and Find Full Text PDF

Objectives: To develop and validate the performance of CT-based radiomics models for predicting the prognosis of acute pancreatitis.

Methods: All 344 patients (51 ± 15 years, 171 men) in a first episode of acute pancreatitis (AP) were retrospectively enrolled and randomly divided into training (n = 206), validation (n = 69), and test (n = 69) sets with the ratio of 6:2:2. The patients were dichotomized into good and poor prognosis subgroups based on follow-up CT and clinical data.

View Article and Find Full Text PDF

Purpose: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC).

Methods: A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52).

View Article and Find Full Text PDF

Risk prediction for elderly cognitive impairment by radiomic and morphological quantification analysis based on a cerebral MRA imaging cohort.

Eur Radiol

January 2025

Institute of PLA Geriatric Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.

Objective: To establish morphological and radiomic models for early prediction of cognitive impairment associated with cerebrovascular disease (CI-CVD) in an elderly cohort based on cerebral magnetic resonance angiography (MRA).

Methods: One-hundred four patients with CI-CVD and 107 control subjects were retrospectively recruited from the 14-year elderly MRA cohort, and 63 subjects were enrolled for external validation. Automated quantitative analysis was applied to analyse the morphological features, including the stenosis score, length, relative length, twisted angle, and maximum deviation of cerebral arteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!