The prime objective of the current research work was to understand the role of microwave-assisted pyrolysis for the upgradation of expanded polystyrene (EPS) waste into valuable aromatic hydrocarbons. Ethyl acetate solvent was used to dissolve the EPS to enhance the homogeneous dispersion of EPS with susceptor particles. Biochar obtained from the pyrolysis was used as a susceptor. The design of experiments method was used to understand the role of microwave power (300 W, 450 W, and 600 W) and susceptor quantity (5 g, 10 g, and 15 g) in the pyrolysis process. The pyrolysis was conducted till the temperature reached up to 600 °C, and this temperature was achieved in the time interval of 14-38 min based on the experimental conditions. The obtained average heating rates varied in the range of 15 to 41 °C/min to attain the pyrolysis temperature. The EPS feed was converted into char (~ 2.5 wt.%), oil (51 to 60 wt.%), and gaseous (37 to 47 wt.%) products. The specific microwave energy (J/g) was calculated to know the energy requirement; it increased with an increase in susceptor quantity and microwave power, whereas specific microwave power (W/g) was a function of microwave power and increased from 15 to 30 W/g. The predicted values calculated using the model equations closely matched the actual values showing that the developed model equations via optimization had a good fit. The obtained pyrolysis oil physicochemical properties including viscosity (1 to 1.4 cP), density (990 to 1030 kg/m), heating value (39 to 42 MJ/kg), and flash point (98 to 101 °C) were thoroughly analyzed. The pyrolysis oil was rich in aromatic hydrocarbons and it was predominantly composed of styrene, cyclopropyl methylbenzene, and alkylbenzene derivates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-28294-2DOI Listing

Publication Analysis

Top Keywords

microwave power
16
aromatic hydrocarbons
12
valuable aromatic
8
pyrolysis
8
microwave-assisted pyrolysis
8
understand role
8
susceptor quantity
8
specific microwave
8
model equations
8
pyrolysis oil
8

Similar Publications

The growing demand for clean, decentralized energy has increased interest in blue energy, which generates power from water with different salt concentrations. Despite its potential as a renewable, low-cost energy source, optimizing electrode materials remains a challenge. This work presents a nanomaterial developed via microwave-assisted sol-gel methodology for blue energy applications, where ion diffusion and charge storage are critical.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effectiveness and safety of minimally invasive thermal ablation techniques (microwave ablation and radiofrequency ablation) compared to traditional open surgery for treating benign thyroid nodules.
  • The research included 160 patients treated at a hospital between 2020 and 2023, with a subsequent propensity score matching process to create three comparable groups for analysis.
  • Findings indicate that both microwave and radiofrequency ablation led to less blood loss, shorter surgery times, reduced hospital stays, lower pain levels, fewer complications, and higher patient satisfaction than open surgery.
View Article and Find Full Text PDF

The use of bioactive compounds in plants as reducing, stabilizing, and capping agents in nanoparticle manufacturing is an exceptionally eco-friendly approach. This work used rosehip seed extract, acquired by automatic solvent extraction, in the microwave-assisted green production of zinc oxide nanoparticles (ZnO NPs). The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of the extracted materials and nanoparticles were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays.

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

An ultra-narrow-linewidth laser is a core device in fields such as optical atomic clocks, quantum communications, and microwave photonic oscillators. This paper reports an ultra-narrow-linewidth self-injection locked semiconductor laser, which is realized through optical feedback from a high-Q (258 million) Fabry-Perot (FP) cavity constructed with three mirrors, generating an output power of 12 mW. Employing a delay self-heterodyne method based on a signal source analyzer, the phase noise of the laser is -129 dBc/Hz at 100 kHz offset frequency, with an intrinsic linewidth of 3 mHz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!