The carbohydrate fraction of most mammalian milks contains a variety of oligosaccharides that encompass a range of structures and monosaccharide compositions. Human milk oligosaccharides have received considerable attention due to their biological roles in neonatal gut microbiota, immunomodulation, and brain development. However, a major challenge in understanding the biology of milk oligosaccharides across other mammals is that reports span more than 5 decades of publications with varying data reporting methods. In the present study, publications on milk oligosaccharide profiles were identified and harmonized into a standardized format to create a comprehensive, machine-readable database of milk oligosaccharides across mammalian species. The resulting database, MilkOligoDB, includes 3193 entries for 783 unique oligosaccharide structures from the milk of 77 different species harvested from 113 publications. Cross-species and cross-publication comparisons of milk oligosaccharide profiles reveal common structural motifs within mammalian orders. Of the species studied, only chimpanzees, bonobos, and Asian elephants share the specific combination of fucosylation, sialylation, and core structures that are characteristic of human milk oligosaccharides. However, agriculturally important species do produce diverse oligosaccharides that may be valuable for human supplementation. Overall, MilkOligoDB facilitates cross-species and cross-publication comparisons of milk oligosaccharide profiles and the generation of new data-driven hypotheses for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10293200PMC
http://dx.doi.org/10.1038/s41598-023-36866-yDOI Listing

Publication Analysis

Top Keywords

milk oligosaccharide
16
milk oligosaccharides
16
oligosaccharide profiles
12
database milkoligodb
8
common structural
8
structural motifs
8
milk
8
human milk
8
cross-species cross-publication
8
cross-publication comparisons
8

Similar Publications

The prebiotic potential of lactobin and glucans combined with goat's milk in cats.

Can J Vet Res

January 2025

Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Haidian District, Beijing 100081, China (Han, Sun, Gu, J. Wang, X. Wang, Tao, Z. Wang, Liu); Jiangxi Agricultural University, No. 1225, Zhimin Avenue, Xinjian District, Nanchang City 330045, China (Gu).

Prebiotics are important for gut health and immunity in animals and could promote the growth of beneficial bacteria. The objective of this study was to investigate the prebiotic potential of lactobin and glucans when combined with goat's milk in the diet of cats. Twenty-four healthy cats (all about 2 y old) were randomly assigned to 4 treatment groups.

View Article and Find Full Text PDF

Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris.

Enzyme Microb Technol

December 2024

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:

Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.

View Article and Find Full Text PDF

Background: Early-life exposures including diet, and the gut microbiome have been proposed to predispose infants towards multifactorial diseases later in life. Delivery via Cesarian section disrupts the establishment of the gut microbiome and has been associated with negative long-term outcomes. Here, we hypothesize that Cesarian section delivery alters not only the composition of the developing infant gut microbiome but also its metabolic capabilities.

View Article and Find Full Text PDF

Identification of nine mammal monosaccharides by solid-state nanopores.

Sci Rep

December 2024

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

Glycans, nucleic acids and proteins are three major classes of natural biopolymers. The extremely high diversity of isomerization makes structural elucidation of glycans the most challenging job among three classes. In the past few years, the single molecule sensing technique based on nanopores has achieved great success in sequencing of DNA.

View Article and Find Full Text PDF

Background: The interaction between the human breast milk microbiota and human milk oligosaccharides (HMOs) plays a crucial role in the healthy growth and development of infants. We aimed to clarify the link between the breast milk microbiota and HMOs at two stages of lactation.

Methods: The microbiota and HMOs of 20 colostrum samples (C group, 1-5 days postpartum) and 20 mature milk samples (S group, 42 days postpartum) collected from postpartum mothers were analyzed using 16S rRNA gene high-throughput sequencing and high-performance liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!