Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glycosyltransferases synthesize a variety of exopolysaccharides (EPS) with different properties by altering the type of glycosidic linkage, degree of branching, length, mass, and conformation of the polymers. The genome analysis of an EPS-producing, Lactobacillus plantarum BR2 (Accession No: MN176402) showed twelve glycosyltransferase genes, and the gene BR2gtf (1116 bp), annotated as an EPS biosynthetic glycosyltransferase was cloned into the pNZ8148 vector. The recombinant pNZ8148 vector along with pNZ9530, a regulatory plasmid, were electroporated to L. plantarum BR2 for the over-expression of gtf gene under a nisin-controlled expression system and the glycosyltransferase activity of the recombinant and the wild-type strains were analysed. The recombinant strain showed 54.4% increase in EPS production with the maximum EPS production of 23.2 ± 0.5 g/L in a 5 L bioreactor study after 72 h of fermentation. This study shows an effective molecular strategy possibly to be adopted in lactic acid bacteria to enhance exopolysaccharide production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!