scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data.

Comput Biol Med

College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao, 266580, China. Electronic address:

Published: September 2023

Single-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107152DOI Listing

Publication Analysis

Top Keywords

simplified graph
12
graph convolution
12
convolution model
12
cell subpopulations
12
adaptive simplified
8
unsupervised clustering
8
clustering methods
8
scasgc
5
clustering
5
scasgc adaptive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!