Plant yield is severely hampered by chromium (Cr) toxicity, affirming the urgent need to develop strategies to suppress its phyto-accumulation. Silicon dioxide nanoparticles (SiO NPs) have emerged as a provider of sustainable crop production and resistance to abiotic stress. But, the mechanisms by which seed-primed SiO NPs palliate Cr-accumulation and its toxic impacts in Brassica napus L. tissues remains poorly understood. To address this gap, present study examined the protective efficacy of seed priming with SiO NPs (400 mg/L) in relieving the Cr (200 µM) phytotoxicity mainly in B. napus seedlings. Results delineated that SiO NPs significantly declined the accumulation of Cr (38.7/35.9%), MDA (25.9/29.1%), HO (27.04/36.9%) and O (30.02/34.7%) contents in leaves/roots, enhanced the nutrients acquisition, leading to improved photosynthetic performance and better plant growth. SiO NPs boosted the plant immunity by upregulating the transcripts of antioxidant (SOD, CAT, APX, GR) or defense-related genes (PAL, CAD, PPO, PAO and MT-1), GSH (assists Cr-vacuolar sequestration), and modifying the subcellular distribution (enhances Cr-proportion in cell wall), thereby confer tolerance to ultrastructural damages under Cr stress. Our first evidence to establish the Cr-detoxification by seed-primed SiO NPs in B. napus, indicated the potential of SiO NPs as stress-reducing agent for crops grown in Cr-contaminated areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131906 | DOI Listing |
Food Chem X
January 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Departamento de Física Aplicada, Mérida 97310, Yucatán, Mexico.
Nanoparticles (NPs) are excellent antibacterial agents due to their ability to interact with microorganisms at the cellular level. However, their antimicrobial capacity can be limited by their tendency to agglomerate. Functionalizing NPs with suitable ligands improves their stability and dispersion in different media and enhances their antibacterial activity.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Engineering and Technology, Southwest University, Chongqing 400716, PR China. Electronic address:
The detection of heavy metals in soil is of great scientific significance for food security and human health. However, traditional detection methods are complicated, time-consuming, and labor-intensive. Herein, we developed a novel method using Au@SiO nanoparticles (NPs) and surface microstructure combined with laser-induced breakdown spectroscopy (Au@SiO NPs-SMS-LIBS) for the rapid detection of lead (Pb), chromium (Cr), and copper (Cu) in soil samples.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!