Ginsenoside Rb1 inhibits ferroptosis to ameliorate hypoxic-ischemic brain damage in neonatal rats.

Int Immunopharmacol

Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:

Published: August 2023

Hypoxic ischemic encephalopathy (HIE) is among the leading causes of neonatal mortality, and currently there is no effective treatment. Ginsenoside Rb1 (GsRb1) is one of the principal active components of ginseng, and has protective benefits against oxidative stress, inflammation, hypoxic injury, and so on. However, the role and underlying mechanism of GsRb1 on HIE are unclear. Here, we established the neonatal rat hypoxic-ischemic brain damage (HIBD) model in vivo and the PC12 cell oxygen-glucose deprivation (OGD) model in vitro to investigate the neuroprotective effects of GsRb1 on HIE, and illuminate the potential mechanism. Our results showed that GsRb1 and the ferroptosis inhibitor liproxstatin-1 (Lip-1) could significantly restore System Xc activity and antioxidant levels as well as inhibit lipid oxidation levels and inflammatory index levels of HIBD and OGD models. Taken together, GsRb1 might inhibit ferroptosis to exert neuroprotective effects on HIE through alleviating oxidative stress and inflammation, which will set the foundation for future research on ferroptosis by reducing hypoxic-ischemic brain injury and suggest that GsRb1 might be a promising therapeutic agent for HIE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110503DOI Listing

Publication Analysis

Top Keywords

hypoxic-ischemic brain
12
ginsenoside rb1
8
brain damage
8
oxidative stress
8
stress inflammation
8
mechanism gsrb1
8
gsrb1 hie
8
neuroprotective effects
8
gsrb1
6
hie
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!