The formulation of rheological constitutive equations-models that relate internal stresses and deformations in complex fluids-is a critical step in the engineering of systems involving soft materials. While data-driven models provide accessible alternatives to expensive first-principles models and less accurate empirical models in many engineering disciplines, the development of similar models for complex fluids has lagged. The diversity of techniques for characterizing non-Newtonian fluid dynamics creates a challenge for classical machine learning approaches, which require uniformly structured training data. Consequently, early machine-learning based constitutive equations have not been portable between different deformation protocols or mechanical observables. Here, we present a data-driven framework that resolves such issues, allowing rheologists to construct learnable models that incorporate essential physical information, while remaining agnostic to details regarding particular experimental protocols or flow kinematics. These scientific machine learning models incorporate a universal approximator within a materially objective tensorial constitutive framework. By construction, these models respect physical constraints, such as frame-invariance and tensor symmetry, required by continuum mechanics. We demonstrate that this framework facilitates the rapid discovery of accurate constitutive equations from limited data and that the learned models may be used to describe more kinematically complex flows. This inherent flexibility admits the application of these "digital fluid twins" to a range of material systems and engineering problems. We illustrate this flexibility by deploying a trained model within a multidimensional computational fluid dynamics simulation-a task that is not achievable using any previously developed data-driven rheological equation of state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318955 | PMC |
http://dx.doi.org/10.1073/pnas.2304669120 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFBrain Inform
January 2025
Department of Computing, Glasgow Caledonian University, Glasgow, G4 0BA, Scotland.
A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions.
View Article and Find Full Text PDFBreast Cancer
January 2025
Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
Purpose: The aim of this study was to examine the clinical utility of tumor-infiltrating lymphocytes (TILs) evaluated by "average" and "hot-spot" methods in breast cancer patients.
Methods: We examined 367 breast cancer patients without neoadjuvant chemotherapy (NAC) by average and hot-spot methods to determine the consistency of TIL scores between biopsy and surgical specimens. TIL scores before NAC were also compared with the pathological complete response (pCR) rate and clinical outcomes in 144 breast cancer patients that received NAC.
Eur J Sport Sci
February 2025
School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia.
End-range movements are among the most demanding but least understood in the sport of tennis. Using male Hawk-Eye data from match-play during the 2021-2023 Australian Open tournaments, we evaluated the speed, deceleration, acceleration, and shot quality characteristics of these types of movement in men's Grand Slam tennis. Lateral end-range movements that incorporated a change of direction (CoD) were identified for analysis using k-means (end-range) and random forest (CoD) machine learning models.
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Computing, University of North Florida, 1 UNF Dr., Jacksonville, 32246, FL, USA.
The "no-show" problem in healthcare refers to the prevalent phenomenon where patients schedule appointments with healthcare providers but fail to attend them without prior cancellation or rescheduling. In addressing this issue, our study delves into a multivariate analysis over a five-year period involving 21,969 patients. Our study introduces a predictive model framework that offers a holistic approach to managing the no-show problem in healthcare, incorporating elements into the objective function that address not only the accurate prediction of no-shows but also the management of service capacity, overbooking, and idle resource allocation resulting from mispredictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!