The current state of knowledge on bud dormancy is limited. However, expanding such knowledge is crucial in order to properly model forest responses and feedback to future climate. Recent studies have shown that warming can decrease chilling accumulation and increase dormancy depth, thereby inducing delayed budburst in European beech (Fagus sylvatica L). Whether fall warming can advance spring phenology is unclear. To investigate the effect of warming on endodormancy of deciduous trees, we tested the impact of mild elevated temperature (+2.5-3.5 °C; temperature, on average, kept at 10 °C) in mid and late autumn on the bud dormancy depth and spring phenology of beech. We studied saplings by inducing periods of warming in greenhouses over a 2-year period. Even though warming reduced chilling accumulation in both years, we observed that the response of dormancy depth and spring budburst were year-specific. We found that warming during endodormancy peak could decrease the bud dormancy depth and therefore advance spring budburst. This effect appears to be modulated by factors such as the date of senescence onset and forcing intensity during endodormancy. Results from this study suggest that not only chilling but also forcing controls bud development during endodormancy and that extra forcing in autumn can offset reduced chilling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpad080 | DOI Listing |
AbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success.
View Article and Find Full Text PDFBMC Genomics
December 2024
Yunnan Agricultural University, Kunming, China.
Background: Quinoa, as a new food crop, has attracted extensive attention at home and abroad. However, the natural disaster of spike germination seriously threatens the quality and yield of quinoa. Currently, there are limited reports on the molecular mechanisms associated with spike germination in quinoa.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
Plants (Basel)
November 2024
College of Grassland Science, Xinjiang Agricultural University, Urümqi 830052, China.
, a winter annual plant, produces dimorphic diaspores: complex diaspores with multi-awns and simple diaspores with one awn. However, there is no information available about the role of awns and the germination characteristics of dimorphic diaspores. Dispersal germination and awns hygroscopicity of the dimorphic diaspores were assessed.
View Article and Find Full Text PDFOncol Rep
November 2024
Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R China.
Chemotherapy remains a prevalent treatment for a wide range of tumors; however, the majority of patients undergoing conventional chemotherapy experience varying levels of chemoresistance, ultimately leading to suboptimal outcomes. The present article provided an in‑depth review of chemotherapy resistance in tumors, emphasizing the underlying factors contributing to this resistance in tumor cells. It also explored recent advancements in the identification of key molecules and molecular mechanisms within the primary chemoresistant pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!