A Bifunctional Catalyst for Green Ammonia Synthesis from Ubiquitous Air and Water.

Adv Mater

Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China.

Published: October 2023

Ammonia (NH ) is essential for modern agriculture and industry, and, due to its high hydrogen density and no carbon emission, it is also expected to be the next-generation of "clean" energy carrier. Herein, directly from air and water, a plasma-electrocatalytic reaction system for NH production, which combines two steps of plasma-air-to-NO and electrochemical NO reduction reaction (eNO RR) with a bifunctional catalyst, is successfully established. Especially, the bifunctional catalyst of CuCo O /Ni can simultaneously promote plasma-air-to-NO and eNO RR processes. The easy adsorption and activation of O by CuCo O /Ni greatly improve the NO production rate at the first step. Further, CuCo O /Ni can also resolve the overbonding of the key intermediate of NO, and thus reduce the energy barrier of the second step of eNO RR. Finally, the "green" NH production achieves excellent FE (96.8%) and record-high NH yield rate of 145.8 mg h  cm with large partial current density (1384.7 mA cm ). Moreover, an enlarged self-made H-type electrolyzer improves the NH yield to 3.6 g h , and the obtained NH is then rapidly converted to a solid of magnesium ammonium phosphate hexahydrate, which favors the easy storage and transportation of NH .

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202303455DOI Listing

Publication Analysis

Top Keywords

bifunctional catalyst
12
cuco /ni
12
air water
8
catalyst green
4
green ammonia
4
ammonia synthesis
4
synthesis ubiquitous
4
ubiquitous air
4
water ammonia
4
ammonia essential
4

Similar Publications

Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.

View Article and Find Full Text PDF

This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).

View Article and Find Full Text PDF

Rapid Synthesis of Carbon-Supported Ru-RuO₂ Heterostructures for Efficient Electrochemical Water Splitting.

Adv Sci (Weinh)

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Constructing bifunctional electrocatalysts through the synergistic effect of diverse metal sites is crucial for achieving high-efficiency and steady overall water splitting. Herein, a "dual-HER/OER-sites-in-one" strategy is proposed to regulate dominant active sites, wherein Ni/Co(OH)-Ru heterogeneous catalysts formed on nickel foam (NF) demonstrate remarkable catalytic activity for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER). Meanwhile, the potentials@10 mA cm of Ni/Co(OH)-Ru@NF for overall alkaline water and seawater splitting are only 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!