Obesity and cognitive decline including dementia and Alzheimer's Disease (AD) affect millions worldwide. Several studies have shown that obese individuals suffer from cognitive decline. Here, we suggest that adiponectin and leptin, protein hormones secreted by white adipose tissue explain the relationship between obesity and cognitive decline. We systematically searched PubMed and World Health Organization (WHO) websites with the keywords obesity and dementia and compiled literature that explains how adiponectin and leptin impact obesity and cognitive decline. Full-text, free-access articles on PubMed published after 2009 have been included. Whereas articles published before 2009, books, and reports were excluded. We concentrated on mechanisms via which adiponectin and leptin affect energy expenditure, fatty acid catabolism, satiety, hunger, Body Mass Index (BMI), neurogenesis, and brain structures that lead to the development of cognitive dysfunction. Moreover, we hypothesized that adiponectin and leptin hormones explain how obesity and dementia are connected. After compiling the research studies, we summarized that adiponectin and leptin negatively correlate to BMI. Adiponectin arbitrates energy expenditure and fatty acid catabolism to prevent obesity. In the presence of adiponectin, hippocampal cells proliferate, whereas neurogenesis is reduced in its absence. However, leptin prevents obesity by promoting satiety, reducing hunger, and increasing insulin sensitivity. It also has neuroprotective effects thus reducing the risk of developing cognitive decline. So, physical exercise, diet alteration, weight reduction, adiponectin, and leptin supplementation should be carried out to protect against obesity-induced cognitive decline. Therefore, further research studies should be done in this area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289712PMC
http://dx.doi.org/10.1097/MS9.0000000000000766DOI Listing

Publication Analysis

Top Keywords

adiponectin leptin
28
cognitive decline
28
obesity cognitive
16
adiponectin
9
leptin
8
obesity
8
cognitive
8
obesity dementia
8
published 2009
8
energy expenditure
8

Similar Publications

Adipose tissue may not be a major player in the inflammatory pathogenesis of Autism Spectrum Disorder.

Brain Behav Immun Health

February 2025

Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.

Purpose: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder increasingly recognized for its strong association with chronic inflammation. Adipose tissue functions as an endocrine organ and can secrete inflammatory cytokines to mediate inflammation. However, its involvement in ASD-related inflammation remains unclear.

View Article and Find Full Text PDF

Aims: Gestational diabetes mellitus (GDM) poses a significant risk for developing type 2 diabetes mellitus (T2D) and exhibits heterogeneity. However, understanding the link between different types of post-GDM individuals without diabetes and their progression to T2D is crucial to advance personalised medicine approaches.

Materials And Methods: We employed a discovery-based unsupervised machine learning clustering method to generate clustering models for analysing metabolomics, clinical, and biochemical datasets.

View Article and Find Full Text PDF

Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.

View Article and Find Full Text PDF

Independent effect of body fat content on inflammatory biomarkers in children and adolescents: The GENOBOX study.

Nutr Metab Cardiovasc Dis

November 2024

Growth, Exercise, Nutrition and Development (GENUD) Research Group, Department of Physiatry and Nursing, University of Zaragoza, 50009, Zaragoza, Spain; Pediatric Endocrinology Unit, Lozano Blesa Clinic Hospital, Faculty of Medicine, University of Zaragoza, 50009, Zaragoza, Spain; Aragon Agrofood Institute (IA2), Health Research Institute (IIS Aragón), University of Zaragoza, 50009, Zaragoza, Spain; Obesity and Nutrition Physiopathology Center (CIBERobn), Carlos III Health Institute, 28029, Madrid, Spain. Electronic address:

Background And Aims: To assess the relationship between body composition indicators and inflammatory biomarkers in children and adolescents of the GENOBOX study.

Methods And Results: Anthropometry data from 264 subjects from the subsample of Zaragoza (Spain) included: weight, height, waist circumference, body mass index and triponderal index. Body composition was determined by Dual-energy X-ray Absorptiometry (DXA), obtaining visceral adipose tissue, fat mass index and lean mass index.

View Article and Find Full Text PDF

This meta-analysis aims to compile all randomised controlled trials (RCTs) that examined the effects of grapes or grape products on adult anthropometric measures and serum adipokines. We searched PubMed, Scopus, Google scholar, Web of Science and CENTRAL databases published before January 2022. Random-effects model was used to combine mean differences between intervention and placebo groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!