A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MoDALAS: addressing assurance for learning-enabled autonomous systems in the face of uncertainty. | LitMetric

MoDALAS: addressing assurance for learning-enabled autonomous systems in the face of uncertainty.

Softw Syst Model

Department of Computer Science and Engineering, Michigan State University, 428 S Shaw Ln, East Lansing, MI 48824 USA.

Published: March 2023

Increasingly, safety-critical systems include artificial intelligence and machine learning components (i.e., learning-enabled components (LECs)). However, when behavior is learned in a training environment that fails to fully capture real-world phenomena, the response of an LEC to untrained phenomena is uncertain and therefore cannot be assured as safe. Automated methods are needed for self-assessment and adaptation to decide when learned behavior can be trusted. This work introduces a model-driven approach to manage self-adaptation of a learning-enabled system (LES) to account for run-time contexts for which the learned behavior of LECs cannot be trusted. The resulting framework enables an LES to monitor and evaluate goal models at run time to determine whether or not LECs can be expected to meet functional objectives and enables system adaptation accordingly. Using this framework enables stakeholders to have more confidence that LECs are used only in contexts comparable to those validated at design time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024308PMC
http://dx.doi.org/10.1007/s10270-023-01090-9DOI Listing

Publication Analysis

Top Keywords

learned behavior
8
framework enables
8
modalas addressing
4
addressing assurance
4
assurance learning-enabled
4
learning-enabled autonomous
4
autonomous systems
4
systems face
4
face uncertainty
4
uncertainty increasingly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!