Increased use of ultra-wideband (UWB) in biomedical applications based on wireless body area networks (WBAN) opens a variety of options in the field of biomedical research. WBAN may aid in the continuous health monitoring of patients while they go about their everyday lives. Many studies and researchers were conducted several experimentations in the same field for the performance improvement. This study covered the hybridization of UWB technology, as well as on-body, off-body, and human-body ultra-wideband communication (HB-UWB). In this paper, the parameters considered are throughput, energy consumption, energy efficiency, energy used, network survival and delay. An improved model for design and assessment of power-saving UWB-WBAN was developed in this paper. A novel protocol model was introduced in this paper, namely low-power traffic-aware emergency based narrowband protocol (LTE-NBP) to overcome the major drawbacks of emergency, critical data transmission, reliability and the power issues in UWB-WBAN. It's the emergency-based low-power traffic-aware narrowband protocol. It is based on the dual-band physical layer technology. The suggested protocol considered an aware traffic model and an emergency medium access control (MAC) protocol. The proposed model's performance was evaluated and compared with the related algorithms on different performance parameters. The improved model is found to be efficient in throughput, energy efficiency, energy consumption, and delay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050796PMC
http://dx.doi.org/10.1007/s11042-023-15093-7DOI Listing

Publication Analysis

Top Keywords

throughput energy
8
energy consumption
8
energy efficiency
8
efficiency energy
8
improved model
8
low-power traffic-aware
8
narrowband protocol
8
energy
6
protocol
5
lte-nbp holistic
4

Similar Publications

Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties.

Int J Biol Macromol

January 2025

Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.

Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).

View Article and Find Full Text PDF

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

High-throughput and sustainable B vitamins analysis in nutritional supplements, vegetables, and fruits via 2D carbon microfiber fractionation system coupled with mass spectrometry.

Talanta

January 2025

College of Pharmacy, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China; Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China. Electronic address:

B vitamins are essential for energy metabolism, nervous health, blood production, and the immune system. Their quantification in nutritional supplements and food is mandatory to manage a correct daily intake and dosage. In this study, a fast and sustainable method for the analysis of 8 B vitamins (VB, VB, VB, nicotinamide, VB, VB, VB, VB) in real samples using a 2D-carbon microfiber fractionation system combined with a triple quadrupole mass spectrometer (2DμCFs-QqQ-MS/MS) is presented.

View Article and Find Full Text PDF

This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!