A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

68 landmarks are efficient for 3D face alignment: what about more?: 3D face alignment method applied to face recognition. | LitMetric

68 landmarks are efficient for 3D face alignment: what about more?: 3D face alignment method applied to face recognition.

Multimed Tools Appl

REsearch Groups in Intelligent Machines (REGIM Lab), University of Sfax, National Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038 Tunisia.

Published: April 2023

This paper proposes a 3D face alignment of 2D face images in the wild with noisy landmarks. The objective is to recognize individuals from their single profile image. We first proceed by extracting more than 68 landmarks using a bag of features. This allows us to obtain a bag of visible and invisible facial keypoints. Then, we reconstruct a 3D face model and get a triangular mesh by meshing the obtained keypoints. For each face, the number of keypoints is not the same, which makes this step very challenging. Later, we process the 3D face using butterfly and BPA algorithms to make correlation and regularity between 3D face regions. Indeed, 2D-to-3D annotations give much higher quality to the 3D reconstructed face model without the need for any additional 3D Morphable models. Finally, we carry out alignment and pose correction steps to get frontal pose by fitting the rendered 3D reconstructed face to 2D face and performing pose normalization to achieve good rates in face recognition. The recognition step is based on deep learning and it is performed using DCNNs, which are very powerful and modern, for feature learning and face identification. To verify the proposed method, three popular benchmarks, YTF, LFW, and BIWI databases, are tested. Compared to the best recognition results reported on these benchmarks, our proposed method achieves comparable or even better recognition performances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10066970PMC
http://dx.doi.org/10.1007/s11042-023-14770-xDOI Listing

Publication Analysis

Top Keywords

face
14
face alignment
12
face recognition
8
face model
8
reconstructed face
8
proposed method
8
recognition
5
landmarks efficient
4
efficient face
4
alignment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!