Breast cancer, though rare in male, is very frequent in female and has high mortality rate which can be reduced if detected and diagnosed at the early stage. Thus, in this paper, deep learning architecture based on U-Net is proposed for the detection of breast masses and its characterization as benign or malignant. The evaluation of the proposed architecture in detection is carried out on two benchmark datasets- INbreast and DDSM and achieved a true positive rate of 99.64% at 0.25 false positives per image for INbreast dataset while the same for DDSM are 97.36% and 0.38 FPs/I, respectively. For mass characterization, an accuracy of 97.39% with an AUC of 0.97 is obtained for INbreast while the same for DDSM are 96.81%, and 0.96, respectively. The measured results are further compared with the state-of-the-art techniques where the introduced scheme takes an edge over others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169189 | PMC |
http://dx.doi.org/10.1007/s11042-023-14757-8 | DOI Listing |
Sci Rep
January 2025
College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China.
Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Breast cancer ranks as the second most prevalent cancer globally and is the most frequently diagnosed cancer among women; therefore, early, automated, and precise detection is essential. Most AI-based techniques for breast cancer detection are complex and have high computational costs. Hence, to overcome this challenge, we have presented the innovative LightweightUNet hybrid deep learning (DL) classifier for the accurate classification of breast cancer.
View Article and Find Full Text PDFJ Imaging
December 2024
Computer Science and Engineering Department, College of Engineering, University of Nevada, Reno, Main Campus, Reno, NV 89557, USA.
Mammography images are the most commonly used tool for breast cancer screening. The presence of pectoral muscle in images for the mediolateral oblique view makes designing a robust automated breast cancer detection system more challenging. Most of the current methods for removing the pectoral muscle are based on traditional machine learning approaches.
View Article and Find Full Text PDFComput Biol Med
January 2025
Information Technology Engineering Group, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran. Electronic address:
Breast mass segmentation plays a crucial role in early breast cancer detection and diagnosis, and while Convolutional Neural Networks (CNN) have been widely used for this task, their reliance on local receptive fields limits ability to capture long-range dependencies. Vision Transformers (ViTs), on the other hand, excel in this area by leveraging multi-head self-attention mechanisms to generate attention maps that dynamically gather global spatial information, significantly outperforming CNN-based architectures in various tasks. However, traditional transformer-based models come with challenges, including high computational complexity due to the self-attention mechanism and inefficiency in the static MLP fusion process.
View Article and Find Full Text PDFBiomed Eng Comput Biol
October 2024
Department of Computer Science and Engineering, School of Engineering (CSE), Anurag University, Hyderabad, Telangana, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!