A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Text recognition and analysis of network public opinion focus events of a major epidemic: a case study of "COVID-19" in Sina Microblogs. | LitMetric

Identifying and analyzing the public's opinion of focal events during a major epidemic can help the government grasp the vicissitudes of network public opinion in a timely manner and provide the appropriate responses. Taking the COVID-19 epidemic as an example, this study begins by using Python-selenium to capture the original text and comment data related to COVID-19 from Sina Microblog's CCTV News from Jan. 19, 2020, to Feb. 20, 2020. The study subsequently uses a manual interpretation method to classify the Weibo content and analyzes the shifting focus phenomena of network public opinion based on the moving average method. Next, the study uses an enhances TF-IDF to extract keywords from the Weibo comment and uses the keywords to construct a word co-occurrence network. The results show that during the epidemic, the network public opinion focus shifted significantly over time. With the progression of the epidemic, the focus of network public opinion diversified, and various categories stabilized. Compared to simple keyword and text classification recognition focus problems, the proposed model, which is highly accurate, identified multiple network public opinion focus problems and described the core contradictions of the different focus problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989565PMC
http://dx.doi.org/10.1007/s11042-023-14916-xDOI Listing

Publication Analysis

Top Keywords

network public
24
public opinion
24
opinion focus
12
focus problems
12
events major
8
major epidemic
8
network
7
opinion
7
focus
7
public
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!