Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Text categorization and sentiment analysis are two of the most typical natural language processing tasks with various emerging applications implemented and utilized in different domains, such as health care and policy making. At the same time, the tremendous growth in the popularity and usage of social media, such as Twitter, has resulted on an immense increase in user-generated data, as mainly represented by the corresponding texts in users' posts. However, the analysis of these specific data and the extraction of actionable knowledge and added value out of them is a challenging task due to the domain diversity and the high multilingualism that characterizes these data. The latter highlights the emerging need for the implementation and utilization of domain-agnostic and multilingual solutions. To investigate a portion of these challenges this research work performs a comparative analysis of multilingual approaches for classifying both the sentiment and the text of an examined multilingual corpus. In this context, four multilingual BERT-based classifiers and a zero-shot classification approach are utilized and compared in terms of their accuracy and applicability in the classification of multilingual data. Their comparison has unveiled insightful outcomes and has a twofold interpretation. Multilingual BERT-based classifiers achieve high performances and transfer inference when trained and fine-tuned on multilingual data. While also the zero-shot approach presents a novel technique for creating multilingual solutions in a faster, more efficient, and scalable way. It can easily be fitted to new languages and new tasks while achieving relatively good results across many languages. However, when efficiency and scalability are less important than accuracy, it seems that this model, and zero-shot models in general, can not be compared to fine-tuned and trained multilingual BERT-based classifiers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165589 | PMC |
http://dx.doi.org/10.1007/s00521-023-08629-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!