A new hybrid model of convolutional neural networks and hidden Markov chains for image classification.

Neural Comput Appl

SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France.

Published: May 2023

Convolutional neural networks (CNNs) have lately proven to be extremely effective in image recognition. Besides CNN, hidden Markov chains (HMCs) are probabilistic models widely used in image processing. This paper presents a new hybrid model composed of both CNNs and HMCs. The CNN model is used for feature extraction and dimensionality reduction and the HMC model for classification. In the new model, named CNN-HMC, convolutional and pooling layers of the CNN model are applied to extract features maps. Also a Peano scan is applied to obtain several HMCs. Expectation-Maximization (EM) algorithm is used to estimate HMC's parameters and to make the Bayesian Maximum Posterior Mode (MPM) classification method used unsupervised. The objective is to enhance the performances of the CNN models for the image classification task. To evaluate the performance of our proposal, it is compared to six models in two series of experiments. In the first series, we consider two CNN-HMC and compare them to two CNNs, 4Conv and Mini AlexNet, respectively. The results show that CNN-HMC model outperforms the classical CNN model, and significantly improves the accuracy of the Mini AlexNet. In the second series, it is compared to four models CNN-SVMs, CNN-LSTMs, CNN-RFs, and CNN-gcForests, which only differ from CNN-HMC by the second classification step. Based on five datasets and four metrics recall, precision, F1-score, and accuracy, results of these comparisons show again the interest of the proposed CNN-HMC. In particular, with a CNN model of 71% of accuracy, the CNN-HMC gives an accuracy ranging between 81.63% and 92.5%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230497PMC
http://dx.doi.org/10.1007/s00521-023-08644-4DOI Listing

Publication Analysis

Top Keywords

cnn model
16
hybrid model
8
convolutional neural
8
neural networks
8
hidden markov
8
markov chains
8
image classification
8
models image
8
model
8
compared models
8

Similar Publications

Optimized convolutional neural network using African vulture optimization algorithm for the detection of exons.

Sci Rep

January 2025

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.

View Article and Find Full Text PDF

Accurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images.

View Article and Find Full Text PDF

Traumatic brain injuries present significant diagnostic challenges in emergency medicine, where the timely interpretation of medical images is crucial for patient outcomes. In this paper, we propose a novel AI-based approach for automatic radiology report generation tailored to cranial trauma cases. Our model integrates an AC-BiFPN with a Transformer architecture to capture and process complex medical imaging data such as CT and MRI scans.

View Article and Find Full Text PDF

Adenoid hypertrophy, characterized by the abnormal enlargement of adenoid tissue, is a condition that can cause significant breathing and sleep disturbances, particularly in children. Accurate diagnosis of adenoid hypertrophy is critical, yet traditional methods, such as imaging and manual interpretation, are prone to errors. This study uses an ensemble deep learning-based approach for adenoid classification.

View Article and Find Full Text PDF

Hip prosthesis failure prediction through radiological deep sequence learning.

Int J Med Inform

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, 20131 Milan, MI, Italy; Cardio Tech-Lab, Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138 Milan, Italy. Electronic address:

Background: Existing deep learning studies for the automated detection of hip prosthesis failure only consider the last available radiographic image. However, using longitudinal data is thought to improve the prediction, by combining temporal and spatial components. The aim of this study is to develop artificial intelligence models for predicting hip implant failure from multiple subsequent plain radiographs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!