Lupus Nephritis (LN) is a significant risk factor for morbidity and mortality in systemic lupus erythematosus, and nephropathology is still the gold standard for diagnosing LN. To assist pathologists in evaluating histopathological images of LN, a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images. This method is based on an improved Cuckoo Search (CS) algorithm that introduces a Diffusion Mechanism (DM) and an Adaptive β-Hill Climbing (AβHC) strategy called the DMCS algorithm. The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset. In addition, the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images. Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution. According to the three image quality evaluation metrics: PSNR, FSIM, and SSIM, the proposed image segmentation method performs well in image segmentation experiments. Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154766 | PMC |
http://dx.doi.org/10.1007/s42235-023-00365-7 | DOI Listing |
Cureus
December 2024
Colorectal Surgery, Blackpool Teaching Hospitals, Blackpool, GBR.
Meckel's diverticulum (MD) is a common congenital anomaly of the gastrointestinal tract, present in approximately 2% of the population. While typically asymptomatic, MD can lead to complications such as obstruction and intussusception. Here, we present a case report of a man presenting with abdominal pain with an incidental finding of MD complicated by intussusception and our management approach.
View Article and Find Full Text PDFNeurooncol Adv
January 2025
Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
Background: Publicly available data are essential for the progress of medical image analysis, in particular for crafting machine learning models. Glioma is the most common group of primary brain tumors, and magnetic resonance imaging (MRI) is a widely used modality in their diagnosis and treatment. However, the availability and quality of public datasets for glioma MRI are not well known.
View Article and Find Full Text PDFFront Neurorobot
January 2025
College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, China.
Accurate building segmentation has become critical in various fields such as urban management, urban planning, mapping, and navigation. With the increasing diversity in the number, size, and shape of buildings, convolutional neural networks have been used to segment and extract buildings from such images, resulting in increased efficiency and utilization of image features. We propose a building semantic segmentation method to improve the traditional Unet convolutional neural network by integrating attention mechanism and boundary detection.
View Article and Find Full Text PDFMethodsX
June 2025
Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune, Maharashtra, India.
Integrated Circuits are made of various transistors that are embedded on a silicon wafer, these wafers are difficult to process and hence are prone to defects. Defecting these defects manually is a time consuming and labour-intensive task and hence automation is necessary. Deep Learning approach is better suited in this case as it is able to generalize defects if trained properly and can be a solution to segmentation and classification of defects automatically.
View Article and Find Full Text PDFImaging-based spatial transcriptomics (ST) is evolving rapidly as a pivotal technology in studying the biology of tumors and their associated microenvironments. However, the strengths of the commercially available ST platforms in studying spatial biology have not been systematically evaluated using rigorously controlled experiments. In this study, we used serial 5-µm sections of formalin-fixed, paraffin-embedded surgically resected lung adenocarcinoma and pleural mesothelioma tumor samples in tissue microarrays to compare the performance of the single cell ST platforms CosMx, MERFISH, and Xenium (uni/multi-modal) platforms in reference to bulk RNA sequencing, multiplex immunofluorescence, GeoMx Digital Spatial Profiler, and hematoxylin and eosin staining data for the same samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!