A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Melt Processible Biodegradable Blends of Polyethylene Glycol Plasticized Cellulose Diacetate with Polylactic Acid and Polybutylene Adipate-Co-Terephthalate. | LitMetric

Enhancing the melt processability of cellulose is key to broadening its applications. This is done via derivatization of cellulose, and subsequent plasticization and/or blending with other biopolymers, such as polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT). However, derivatization of cellulose tends to reduce its biodegradability. Moreover, traditional plasticizers are non-biodegradable. In this study, we report the influence of polyethylene glycol (PEG) plasticizer on the melt processibility and biodegradability of cellulose diacetate (CD) and its blends with PLA and PBAT. CD was first plasticized with PEG (PEG-200) at 35 wt%, and then blended with PLA and PBAT using a twin-screw extruder. Blends of the PEG plasticized CD with PLA at 40 wt% and with PBAT at 60 wt% were studied in detail. Dynamic mechanical analysis (DMA) showed that PEG reduced the glass transition of the CD from ca. 220 °C to less than 100 °C, indicating effective plasticization. Scanning electron microscopy revealed that the CD/PEG-PBAT blend had a smoother morphology implying some miscibility. The CD/PEG-PBAT blend at 60 wt% PBAT had an elongation-to-break of 734%, whereas the CD/PEG-PLA blend had a tensile strength of 20.6 MPa, comparable to that of the PEG plasticized CD. After a 108-day incubation period under simulated aerobic composting, the CD/PEG-PBAT blend at 60 wt% PBAT exhibited a biodegradation of 41%, whereas that of the CD/PEG-PLA at 40 wt% PLA was 107%. This study showed that melt processible, biodegradable CD blends can be synthesized through plasticization with PEG and blending with PBAT or PLA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221747PMC
http://dx.doi.org/10.1007/s10924-023-02925-8DOI Listing

Publication Analysis

Top Keywords

wt% pbat
12
cd/peg-pbat blend
12
melt processible
8
processible biodegradable
8
biodegradable blends
8
polyethylene glycol
8
cellulose diacetate
8
polylactic acid
8
derivatization cellulose
8
pla pbat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!