Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The global-local supply chains are affected by the forward and downward propagation of COVID-19. The pandemic disruption is a low-frequency and high-impact (black swan) event. Adapting to the "New Normal" situation requires adequate risk mitigation strategies. This study proposes a methodology to implement a risk mitigation strategy during supply chain disruptions. Random demand accumulation strategies are considered to identify the disruption-driven challenges under different pre and post-disruption scenarios. The best mitigation strategy and the optimal location of distribution centers to maximize the overall profit were determined using simulation-based optimization, greenfield analysis, and network optimization techniques. The proposed model is then evaluated and validated using appropriate sensitivity analysis. The main contribution of the study is to (i) perform cluster-based supply chain disruption analysis, (ii) propose a resilient and flexible model to illustrate the proactive and reactive measures for the ripple effect, (iii) prepare the supply chain for future pandemic-like crises, and (v) reveal the relationship between the pandemic impact and supply chain resilience. A case study of an ice cream manufacturer is used to demonstrate the proposed model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049901 | PMC |
http://dx.doi.org/10.1007/s10479-023-05291-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!