Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: The use of loss on ignition (LOI) measurements of soil organic matter (SOM) to estimate soil organic carbon (OC) content is a decades-old practice. While there are limitations and uncertainties to this approach, it continues to be necessary for many coastal wetlands researchers and conservation practitioners without access to an elemental analyzer. Multiple measurement, reporting, and verification (MRV) standards recognize the need (and uncertainty) for using this method. However, no framework exists to explain the substantial differences among equations that relate SOM to OC; consequently, equation selection can be a haphazard process leading to widely divergent and inaccurate estimates. To address this lack of clarity, we used a dataset of 1,246 soil samples from 17 mangrove regions in North, Central, and South America, and calculated SOM to OC conversion equations for six unique types of coastal environmental setting. A framework is provided for understanding differences and selecting an equation based on a study region's SOM content and whether mineral sediments are primarily terrigenous or carbonate in origin. This approach identifies the positive dependence of conversion equation slopes on regional mean SOM content and indicates a distinction between carbonate settings with mean (± 1 S.E.) OC:SOM of 0.47 (0.002) and terrigenous settings with mean OC:SOM of 0.32 (0.018). This framework, focusing on unique coastal environmental settings, is a reminder of the global variability in mangrove soil OC content and encourages continued investigation of broadscale factors that contribute to soil formation and change in blue carbon settings.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01698-z.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287774 | PMC |
http://dx.doi.org/10.1007/s13157-023-01698-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!