Biorenewable Calcite as an Inorganic Filler in Ionic Liquid Gel Polymer Electrolytes for Supercapacitors.

ACS Omega

ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.

Published: June 2023

Supercapacitors play a crucial role in the global shift toward cleaner, renewable energy and away from fossil fuels. Ionic liquid electrolytes have a larger electrochemical window than some organic electrolytes and have been mixed with various polymers to make ionic liquid gel polymer electrolytes (ILGPEs), a solid-state electrolyte and separator combination. One way to improve the conductivity of these electrolytes is to add inorganic materials such as ceramics and zeolites to increase their ionic conductivity. Herein, we incorporate a biorenewable calcite from waste blue mussel shells as an inorganic filler in ILGPEs. ILGPEs composed of 80 wt % [EMIM][NTf] and 20 wt % PVdF--HFP are prepared with various amounts of calcite to determine the effect on the ionic conductivity. The optimal addition of calcite is 2 wt % based on the mechanical stability of the ILGPE. The ILGPE with calcite has the same thermostability (350 °C) and electrochemical window (3.5 V) as the control ILGPE. Symmetric coin cell capacitors were fabricated using ILGPEs with 2 wt % calcite and without calcite as a control. Their performance was compared using cyclic voltammetry and galvanostatic cycling. The specific capacitances of the two devices are similar, 110 and 129 F g, with and without calcite, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286090PMC
http://dx.doi.org/10.1021/acsomega.2c06876DOI Listing

Publication Analysis

Top Keywords

ionic liquid
12
biorenewable calcite
8
inorganic filler
8
liquid gel
8
gel polymer
8
polymer electrolytes
8
electrochemical window
8
ionic conductivity
8
calcite
7
ionic
5

Similar Publications

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

This study explores the effects of a subcritical seawater treatment (SST) on buckwheat waste (BW), and the use of the hydrolysate as a liquid fertilizer to improve the growth of lettuce ( L.). Three temperature treatments (110 °C, 170 °C, 230 °C) were used for the SST, and the ionic composition in the seawater achieved the depolymerization and degradation of BW.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

Thanks to their unique physicochemical properties, ionic liquids (ILs) have moved from niche academic interest to critical components in various industrial applications. The textile industry, facing significant environmental and economic pressures, has begun to explore ILs as sustainable alternatives to traditional solvents and chemicals. This review summarizes research on the use of ILs in various textile processes, including dyeing, finishing, and fiber recycling, where their high thermal stability, tunable solubility, and low volatility are exploited to reduce resource consumption and environmental impact.

View Article and Find Full Text PDF

Reconcentrating the Ionic Liquid EMIM-HSO Using Direct Contact Membrane Distillation.

Molecules

January 2025

Department of Chemical Engineering, Louisiana Tech University, 600 Dan Reneau Drive, P.O. Box 10348, Ruston, LA 71272, USA.

Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts' health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted in the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!