The newly emerged SARS-CoV-2, causing COVID-19 in humans, is also infecting American mink (), used in fur production. Since 2020, passive surveillance of SARS-CoV-2 in mink farms was implemented in Lithuania. Here, we describe data from a survey of all 57 active Lithuanian mink farms carried out during November-December 2021 to complement passive surveillance in the country. In all 57 mink farms, nasopharyngeal swab samples were collected from dead or live mink and tested by real-time RT-PCR. Dead mink samples were tested in pools of 5, while live mink samples were tested individually. In 19 mink farms, blood serum was collected and tested for antibodies to determine previous exposure to the virus. Environmental samples from 55 farms were also collected and tested in pooled samples by real-time RT-PCR. The present survey has detected 22.81% viral RNA-positive mink farms and a high number of mink farms that were exposed (84.21, 95% CI 67.81-100%) to the virus. The increasing exposure of mink farms to the virus due to growing human COVID-19 cases and limitations of passive surveillance could explain the observed epidemiological situation of SARS-CoV-2 in Lithuanian mink farms, compared to the few positive farms previously detected by passive surveillance. The unexpected widespread exposure of mink farms to SARS-CoV-2 suggests that passive surveillance is ineffective for early detection of SARS-CoV-2 in mink. Further studies are needed to reveal the present status in previously infected mink farms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288870PMC
http://dx.doi.org/10.3389/fvets.2023.1181826DOI Listing

Publication Analysis

Top Keywords

mink farms
44
passive surveillance
24
mink
16
farms
13
lithuanian mink
12
sars-cov-2 mink
8
live mink
8
real-time rt-pcr
8
mink samples
8
samples tested
8

Similar Publications

Highly pathogenic avian influenza (HPAI) H5N1 is known for its virulence and zoonotic potential, infecting birds and mammals, thus raising public health concerns. Since 2021 its spread among birds has led to cross-species transmission causing epizootics among mammals, eventually impacting fur animal farms in Finland in 2023. To analyze the infectivity of the Finnish H5N1 isolates in human cells, representatives of diverse H5N1 isolates were selected based on the genetic differences, host animal species, and the year of occurrence.

View Article and Find Full Text PDF
Article Synopsis
  • Enterocytozoon bieneusi is a common zoonotic pathogen found in both humans and animals, posing significant public health risks, with limited data available on its prevalence in farmed minks and raccoon dogs in China.
  • A study examined 510 animals, revealing an overall E. bieneusi prevalence of 18.6%, with 10.5% in minks and 28.1% in raccoon dogs, and identified ten different genotypes in these species.
  • The detection of several genotypes previously associated with humans in minks and raccoon dogs suggests that these animals could be potential sources of human microsporidiosis, highlighting the need for enhanced monitoring and prevention strategies.
View Article and Find Full Text PDF

is a diverse genus of piroplasms that parasitize the red blood cells of a wide variety of mammals and avian species, including humans. There is a lack of knowledge on the species of carnivores and mesomammals in the eastern United States and the potential impacts of these species on the health of humans and domestic animals. We surveyed 786 wild mammals in the eastern United States by testing blood, spleen, and heart samples with PCR targeting the 18S rRNA region of apicomplexan parasites.

View Article and Find Full Text PDF

This study aimed to comprehensively characterize the gut microbiota in diarrheal mink. We conducted Shotgun metagenomic sequencing on samples from five groups of diarrheal mink and five groups of healthy mink. The microbiota α-diversity and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology did not show significant differences between the groups.

View Article and Find Full Text PDF

Minor prion substrains overcome transmission barriers.

mBio

November 2024

Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, USA.

Article Synopsis
  • Mammalian prion diseases are caused by a misfolded prion protein (PrP), and research indicates that these prions exist as a mix of dominant and minor strains, affecting their ability to cross species barriers.
  • * Recent findings show that minor prion strains derived from a hamster-adapted strain have a higher infection efficiency in rabbit kidney cells compared to the dominant strain, suggesting they play a significant role in species transmission.
  • * The study further reveals that minor strains outperformed the dominant strain in converting mouse PrP to infectious PrP, indicating greater diversity among these minor strains than previously thought, which has implications for understanding prion diseases and their zoonotic risks.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!