A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an AI based automated analysis of pediatric Apple Watch iECGs. | LitMetric

Introduction: The Apple Watch valuably records event-based electrocardiograms (iECG) in children, as shown in recent studies by Paech et al. In contrast to adults, though, the automatic heart rhythm classification of the Apple Watch did not provide satisfactory results in children. Therefore, ECG analysis is limited to interpretation by a pediatric cardiologist. To surmount this difficulty, an artificial intelligence (AI) based algorithm for the automatic interpretation of pediatric Apple Watch iECGs was developed in this study.

Methods: A first AI-based algorithm was designed and trained based on prerecorded and manually classified i.e., labeled iECGs. Afterward the algorithm was evaluated in a prospectively recruited cohort of children at the Leipzig Heart Center. iECG evaluation by the algorithm was compared to the 12-lead-ECG evaluation by a pediatric cardiologist (gold standard). The outcomes were then used to calculate the sensitivity and specificity of the Apple Software and the self-developed AI.

Results: The main features of the newly developed AI algorithm and the rapid development cycle are presented. Forty-eight pediatric patients were enrolled in this study. The AI reached a specificity of 96.7% and a sensitivity of 66.7% for classifying a normal sinus rhythm.

Conclusion: The current study presents a first AI-based algorithm for the automatic heart rhythm classification of pediatric iECGs, and therefore provides the basis for further development of the AI-based iECG analysis in children as soon as more training data are available. More training in the AI algorithm is inevitable to enable the AI-based iECG analysis to work as a medical tool in complex patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286860PMC
http://dx.doi.org/10.3389/fped.2023.1185629DOI Listing

Publication Analysis

Top Keywords

apple watch
16
pediatric apple
8
watch iecgs
8
automatic heart
8
heart rhythm
8
rhythm classification
8
interpretation pediatric
8
pediatric cardiologist
8
algorithm automatic
8
ai-based algorithm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!