A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sequential adaptive strategies for sampling rare clustered populations. | LitMetric

A new class of sampling strategies is proposed that can be applied to population-based surveys targeting a rare trait that is unevenly spread over an area of interest. Our proposal is characterised by the ability to tailor the data collection to specific features and challenges of the survey at hand. It is based on integrating an adaptive component into a sequential selection, which aims both to intensify the detection of positive cases, upon exploiting the spatial clustering, and to provide a flexible framework to manage logistics and budget constraints. A class of estimators is also proposed to account for the selection bias, that are proved unbiased for the population mean (prevalence) as well as consistent and asymptotically Normal distributed. Unbiased variance estimation is also provided. A ready-to-implement weighting system is developed for estimation purposes. Two special strategies included in the proposed class are presented, that are based on the Poisson sampling and proved more efficient. The selection of primary sampling units is also illustrated for tuberculosis prevalence surveys, which are recommended in many countries and supported by the World Health Organisation as an emblematic example of the need for an improved sampling design. Simulation results are given in the tuberculosis application to illustrate the strengths and weaknesses of the proposed sequential adaptive sampling strategies with respect to traditional cross-sectional non-informative sampling as currently suggested by World Health Organisation guidelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262937PMC
http://dx.doi.org/10.1007/s10260-023-00707-zDOI Listing

Publication Analysis

Top Keywords

sequential adaptive
8
sampling strategies
8
health organisation
8
sampling
7
strategies
4
adaptive strategies
4
strategies sampling
4
sampling rare
4
rare clustered
4
clustered populations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!