belonging to the family is currently used for biodiesel production, and rapid development in plant-based biofuel production has led to its increasing demand. However, massive utilization of bio-industrial plants has led to conservation issues. Moreover, genetic information on is still limited, which is crucial for developmental, physiological, and molecular studies. Studying gene expression is essential to explain plant physiological processes. Nonetheless, this technique requires sensitive and precise measurement of messenger RNA (mRNA). In addition, the presence of internal control genes is important to avoid bias. Therefore, collecting and preserving genetic data for is indispensable. In this study, we aimed to evaluate the application of plastid loci, , and , to the DNA barcode of for use in conservation programs. In addition, we isolated and cloned the () gene fragment for use in gene expression studies. Sequence information was analyzed by comparison with other plants. For actin fragment isolation, reverse-transcription polymerase chain reaction was used. Molecular cloning of was performed using the pTA2 plasmid before sequencing. We successfully isolated and cloned 592 and 840 bp of and fragment genes, respectively. The barcoding marker, rather than the plastidial marker, provided discriminative molecular phylogenetic data for . We also isolated 986 bp of gene fragments. Our phylogenetic analysis demonstrated that is closely related to the gene (97% identity). Our results suggest that could be further developed and used as a barcoding marker for . Moreover, the gene could be further investigated for use in gene expression studies of plant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286179PMC
http://dx.doi.org/10.1177/11779322231182768DOI Listing

Publication Analysis

Top Keywords

gene expression
12
fragment isolation
8
biodiesel production
8
isolated cloned
8
expression studies
8
barcoding marker
8
gene
7
plastid dna
4
dna barcoding
4
barcoding cdna
4

Similar Publications

Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04.

Ecotoxicol Environ Saf

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Perfluorohexane Sulfonic Acid Disrupts the Immune Microenvironment for Spermatogenesis by Damaging the Structure of the Blood-Testis Barrier in Mice.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05).

View Article and Find Full Text PDF

Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression.

Adv Sci (Weinh)

January 2025

Department of Hepatic Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.

Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!