Anthocyanins are a subclass of plant-derived flavonoids that demonstrate immense structural heterogeneity which is challenging to capture in complex extracts by traditional liquid chromatography-mass spectrometry (MS)-based approaches. Here, we investigate direct injection ion mobility-MS as a rapid analytical tool to characterize anthocyanin structural features in red cabbage () extracts. Within a 1.5 min sample run time, we observe localization of structurally similar anthocyanins and their isobars into discrete drift time regions based upon their degree of chemical modifications. Furthermore, drift time-aligned fragmentation enables simultaneous collection of MS, MS/MS, and collisional cross-section data for individual anthocyanin species down to a low picomole scale to generate structural identifiers for rapid identity confirmation. We finally identify anthocyanins in three other extracts based on red cabbage anthocyanin identifiers to demonstrate our high-throughput approach. Direct injection ion mobility-MS therefore provides wholistic structural information on structurally similar, and even isobaric, anthocyanins in complex plant extracts, which can inform the nutritional value of a plant and bolster drug discovery pipelines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288604 | PMC |
http://dx.doi.org/10.1021/acsmeasuresciau.2c00058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!