The identification of high-performing antibodies for TDP-43 for use in Western Blot, immunoprecipitation and immunofluorescence.

F1000Res

Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada.

Published: June 2023

TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA binding protein playing a critical role in the regulation of transcription, splicing and RNA stability. Mutations in leading to aggregation, are suspected to be a characteristic feature of various neurogenerative diseases. The lack of well-characterized anti- TDP-43 antibodies acts as a barrier to establish reproducible TDP-43 research. In this study, we characterized eighteen TDP-43 commercial antibodies for Western blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many well-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285334PMC
http://dx.doi.org/10.12688/f1000research.131852.2DOI Listing

Publication Analysis

Top Keywords

western blot
8
blot immunoprecipitation
8
immunoprecipitation immunofluorescence
8
tdp-43
5
identification high-performing
4
antibodies
4
high-performing antibodies
4
antibodies tdp-43
4
tdp-43 western
4
immunofluorescence tar
4

Similar Publications

Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), along with their pathogenic property in non-small cell lung cancer (NSCLC), require comprehensive analyses and explanations. The study is established with the purpose to elucidate the potential molecular mechanism of circATP9A in NSCLC. CircATP9A and microRNA (miR)-582-3p were evaluated by real-time quantitative polymerase chain reaction, and ribosomal protein large P0 (RPLP0), cleaved caspase-3, cleaved Ki-67, epithelial-to-mesenchymal transition (EMT)-associated proteins (N-cadherin and E-cadherin), and core proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were by Western blot.

View Article and Find Full Text PDF

lncRNA SNHG6 Knockdown Promotes Microglial M2 Polarization and Alleviates Spinal Cord Injury via Regulating the miR-182-5p/NEUROD4 Axis.

Appl Biochem Biotechnol

January 2025

Department of Neurosurgery, General Medical 300 Hospital, No. 420 Huanghe Road, Guiyang City, 550006, Guizhou Province, China.

Spinal cord injury (SCI) is one of the devastating neurological disorders that leads to a loss of motor and sensory functions. Long non-coding RNA small nucleolar RNA host gene 6 (lncRNA SNHG6) plays a crucial role in inflammatory regulation across various diseases. This study investigates the role of SNHG6 in SCI development and its underlying regulatory mechanisms.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!